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Abstract

Mesh2HRTF is an open source project originally developed to provide users with an easy-to-use platform for

the calculation of the head-related transfer functions based on the boundary element method. However, its

boundary element module NumCalc with its easy-to-use input file is flexible, and thus, it can be used as a

standalone application for solving the Helmholtz equation in various other contexts such as calculating the sound

field inside a car or a duct, or the calculation of the scattering of sound waves in an open field around objects

in 3D. NumCalc is a combination of the collocation approach based on the Burton-Miller formulation of the

boundary integral equation and the fast multipole method. This paper discusses novel features of NumCalc such

as the definition of frequency-dependent admittance boundary conditions, and point to its current limitations

with respect to the numerical accuracy and memory consumption.
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1 Introduction

In acoustics, the simulation of wave propagation around objects is an important task. Examples include the cal-

culation of head-related transfer functions (HRTFs), which model the filtering effect of the human anthropom-

etry on incoming sound, the simulation of noise mitigation measures, or the modelling of musical instruments

[1, 2, 3]. Especially for wave propagation in open domains, the boundary element method (BEM) plays a spe-

cial role, because compared to other numerical methods like the finite element method or the finite difference

method, the BEM only needs a discretization of the surface of the scattering objects, but not the space inside or

around the objects.

In this paper, we want to introduce the open source project Mesh2HRTF and its subproject NumCalc. Of course,

one may ask “Why another BEM software project?”. First of all, Mesh2HRTF is open source, and second, it

is relatively easy to use without the need of deep knowledge of BEM topics like boundary integral equations,

singular integral operators or methods to deal with critical frequencies.

Mesh2HRTF was originally planned and designed as an easy-to-use tool for people working in 3D audio to

calculate HRTFs. The idea behind the Mesh2HRTF-chain is, that users only need to load the geometry of

the individual’s head and pinnae into the open source project Blender [4], mark a few elements there, and

Mesh2HRTF takes care of the rest. To that end, Mesh2HRTF comes with an export script for Blender that

generates a file called NC.inp that serves as an input for the BEM-code NumCalc. NumCalc then numerically

solves the Helmholtz equation, that models the propagation of soundwaves, and calculates the sound pressure on

the head and at an evaluation grid around the head. Finally, Mesh2HRTF contains Matlab/Octave and Python

scripts that calculate HRTFs using the BEM results and that store the filter functions in the SOFA format, a
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standardized format for HRTFs [5]. Interested readers are referred to [6] for some tutorials on how to use the

pipeline provided with Mesh2HRTF. However, the structure of the input file for NumCalc is very simple, and

therefore, the BEM code can be applied to many problems in acoustics. Also, as convenient as Blender and the

export script may be, since NC.inp is a text file, there are multiple ways to create this file. E.g., for the sphere

in Section 4, a simple Octave script was used, see [7] for the octave script used to create Fig. 3.

To be clear, among all the other free and open source BEM projects, Mesh2HRTF and NumCalc are probably

not the most elaborate or the most accurate implementations of the Helmholtz BEM, but they provide an easy

way to achieve sufficiently accurate simulation results for users not experienced in numerical mathematics or

partial differential equations. Nevertheless, we also feel that users should know a bit about the software they

are using, about possible caveats and the accuracy they can expect from the calculation.

The aim of this paper is twofold. First, we will use the opportunity to introduce a new feature of the soon-

to-be-released version 1.0 of Mesh2HRTF: Frequency-dependent admittance boundary conditions to model

sound-absorbing materials. Second, we will talk a bit about the input for NumCalc and its implementation,

and provide results for a benchmark example to give users an impression of the accuracy they can expect when

using Mesh2HRTF and/or NumCalc. We are fully aware that this paper can only give a little glimpse into some

aspects of Mesh2HRTF and its application. A more detailed paper is currently in preparation, we also refer

interested readers to the Mesh2HRTF Wiki [8] and to [9].

2 General

The BEM implementation in NumCalc is based on collocation with constant elements, i.e., on each element of

the mesh (= discretization of the surface of the scatterer using quadrilaterals or triangles), the acoustic pressure

and the particle velocity are assumed to be constant. As a general rule of thumb that works very well for most

practical problems, the mesh should contain about 6 to 8 elements per wavelength [10]. See Fig. 1 for an

example of a mesh of a human head and pinna that is fine enough to be used for frequencies up to 20000Hz.

On one hand, it is known that the accuracy of collocation with constant elements is not high compared to other

methods like, e.g, Galerkin with higher order elements. However, on the other hand, the implementation of

the collocation is easier, the generation of the system matrix uses (in general) less numerical operations and

the fact that we are using discontinuous elements allows us to subdivide elements without having to consider

neighbouring elements. Also, for a lot of practical applications, a relative error in the range of 10−3 to 10−2 ,

which can be achieved by NumCalc, is more than enough.

Figure 1: Mesh of the human pinna and parts of the head. The mesh (including parts of the torso)

contains about 74000 triangular elements with an average edge length of 2.4mm.
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One drawback of the BEM is the fact the system matrix to be solved in connection with the BEM is densely

populated and of sizeN×N whereN denotes the number of elements. For the mesh in Fig. 1, for example, the

system matrix would be a densely populated matrix with about 5.4 billion complex valued entries, which puts

a strain on memory and calculation time. To deal with this fact, NumCalc uses the (multilevel) fast multipole

method (FMM, cf. [11]) to speed up matrix-vector multiplication and to reduce the amount of memory needed

to store the system matrix. In a nutshell, the FMM can be described using a man-in-the-middle principle,

where parts of the mesh are grouped into different clusters, and point-to-point interactions are replaced by

local expansions between point and center of the cluster, and expansion between cluster centers. This helps in

reducing the number of operations from O(N2) to O(N log2N), also, the system matrix is never constructed

in full, which reduces the time to set up the linear system of equations and the memory consumption. The

linear system itself is solved using an iterative conjugated gradient solver, cf. [12, Chapter 7.4.1]. However,

users should be aware that the FMM is just an approximation of the original system, and that its accuracy and

efficiency is dependent on the clustering and the frequencies used.

On a side note: It is also known that the BEM for the Helmholtz equation has numerical difficulties at certain

critical frequencies [13, 14]. To deal with these instabilities at critical frequencies, a formulation proposed by

Burton and Miller [13] is used, however, this is handled automatically by NumCalc and users do not need to

bother about the different integral equations.

3 Important input parameters for NumCalc

In order for NumCalc (and any other Helmholtz BEM code) to work, one needs to provide at least the following

information:

– The frequencies for which the scattering problem should be solved,

– the geometry of the scatterer using small triangular or quadrilateral elements,

– boundary conditions for the elements,

– optional: Sound sources and evaluation points, that do not lie on the surface of the objects and where the

sound field should be calculated too.

There are also general parameters containing, e.g., information about the speed of sound and the density of the

medium, a flag if an interior or an exterior problem needs to be solved, and some advanced parameters that allow

experienced users to change details with respect to the clustering used for the FMM. A detailed discussion of

these parameters would be out of the scope of this manuscript, the default values set for these parameters cover

a wide range of use cases, users do not need to worry about these settings in general. The interested reader is

referred to [8] for an in-depth description of these parameters.

3.1. Frequency-defining curves

NumCalc numerically solves the Helmholtz equation in the frequency domain for a given set of frequencies

provided by the user. Frequency-defining curves are piecewise linear functions that map a frequency step to a

frequency or a frequency-dependent value of a boundary condition. The user has to provide the nodes of these

curves. An example: If one would want to calculate the sound field for 10 frequencies between 1000Hz and

10000Hz in steps of 1000Hz, a simple way to describe the curve is given in Lst. 1. A line in the input file

that starts with the hash tag ’#’ is ignored by NumCalc and can be used for comments. The first non-comment

line consists of a dummy parameter (dummy = 1) followed by the number of frequency steps to be calculated
(Number_of_freqsteps = 10) followed by the distance hi between two frequency steps (stepsize = 1.0).
The last entry in this line is given by the start index i0 of the curve (Index0 = 0.0). The next line contains the
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unique number of the curve (in case of a frequency definition curve the curve number is always Curvenumber
= 0) and the number of nodes defining the piecewise linear function mapping the frequency step n to the

respective frequency fn. In Lst. 1 this map is defined as the line between the two nodes (S1, F1) = (0.0, 0Hz)
and (S2, F2) = (10.0, 10000Hz). The frequency for the n-th frequency step is then given as

fn = F1 +
F2 − F1

S2 − S1
((i0 + hi · n− S1) = 0Hz+

10000Hz

10
(0.0+ 1.0 · n) = 1000Hz · n, n = 1, . . . , 10. (1)

# '#' denotes a comment line
# dummy_parameter_for_future_use Number_of_freqsteps stepsize Index0
1 10 1.0 0.0
# Curvenumber Nr_of_nodes_defining_the_curve
0 2
# nodes of the curve (Si, Fi): freq-step vs frequency
0.0 0.0
10.0 10000.0

Listing 1: Definition of 10 uniform frequencies between 1000Hz and 10000Hz

A more elaborate example is given in Lst. 2. This code snippet contains the definition of 8 third-octave

frequency bands (see Tab. 1) where three frequencies are chosen in each band.

#dummy n-steps stepsize
1 24 1.0 0.0
# Curvenr. Nr._of_Nodes
0 9
#define the curve
0.0 35.481
3.0 44.668
6.0 56.234
9.0 70.795
12.0 89.125
15.0 112.202
18.0 141.254
21.0 177.828
24.0 223.872

Listing 2: Definition of a frequency-

defining curve for the third octave band

example
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Figure 2: Frequency-defining curve for

the third octave band described in Tab. 1.

Band: I II III IV V VI VII VIII

Low: 35.5 44.7 56.2 70.8 89.1 112 141 178

Center: 40 50 63 80 100 125 160 200

High: 44.7 56.2 70.8 89.1 112 141 178 224

Table 1: Lowest, center, and highest frequencies in Hz of the third-octave band used in the exam-

ple.
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3.2. Defining Geometry in NumCalc

To describe the geometry of the scattering objects, their surfaces need to be discretized using small triangles

or plane quadrilaterals. To that end, users need to provide a list of the vertices of these elements, and a list

which vertices make up which element. In this list, it is essential that the vertices of each element are ordered

counter-clockwise. If users create the mesh using Blender, the order is correct if they ensure that the normal

vector on each face points to the outside. If users are also interested in the sound field at (evaluation) points

that do not lie on the surface of the objects, these points as well as an element list containing them need to be

provided too. It may seem odd at first that evaluation points also need to have an element associated with them,

but this has two reasons: First, the definition of the elements also contains the information about the type of the

element, i.e., object element or evaluation element. Second, most of the time, users may want to display the

results of their computations, and in this case, elements provide an easy way to interpolate and display results

between nodal points.

For NumCalc this information needs to be provided using one or more text files containing the number and the

coordinates of all the vertices/evaluation points, and one or more text files to describe the different elements,

i.e. a list containing the number of its vertices and its type. Using multiple files to describe the geometry has

the advantage that, e.g., BEMmesh and evaluation grid can be defined individually, and different combinations

of object surface and evaluation grids can be used. If the export script provided by Mesh2HRTF is used in

combination with one of the available evaluation grids, these text files are generated automatically.

The content of the files describing the nodes is as follows. The first line always needs to contain the number of

nodes in the file, the following lines contain the node number and its x, y, and z coordinates. The files describing
the elements have a similar format. The first line always needs to contain the number of elements in the file, the

following lines are given by element-number, node-number of each vertex, type, 0, groupnr. It
is possible to mix triangular and quadrilateral elements, NumCalc checks the length of a line to determine the

form of the element. The element-number is later needed to assign a boundary condition to each element, the
type of the element determines if the element is a BEM element on the surface of the scatterer (type = 0)
or if it contains evaluation nodes outside or inside the scatterer (type = 2). Additionally, elements on object
surfaces can be collected into different groups. However, as his grouping also affects the clustering of the FMM,

users are advised to use only two groups. Group 0 for BEM elements, and Group 1 for evaluation elements.

Again, if Mesh2HRTF is used to generate the input file, this is done automatically. In Lsts. 3 and 4, a few lines

of an example node and element definition are given. The mesh contains 6602 vertices and evaluation points

and 10464 elements. Element 1 is a triangle on the surface of the scatterer belonging to Group 0 , element 10464

is a quadrilateral evaluation element belonging to Group 1.

# number of nodes
6602
# node_number x y z coordinate
1 -5.773503e-01 -5.773503e-01 -5.773503e-01
...
6602 3.000000e+00 0.000000e+00 1.200000e+00

Listing 3: First and last lines of an example node file.

# number of elements
10464
# elem_nr vert1 vert2 vert3 (vert4) elemtyp 0 grpnumber
1 703 704 808 0 0 0
...
10464 6583 6584 6602 6601 2 0 1

Listing 4: First and last lines of an example element file.
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3.3. Boundary conditions

Boundary conditions describe the acoustic behavior of the scattering objects. In NumCalc, three types of bound-

ary conditions (PRES,VELO,ADMI) can be defined for each element. The general syntax for the boundary con-
ditions is

ELEM e1 TO e2 bctype real(v0) curve1 imag(v0) curve2

This line means that all elements with element numbers in the interval [e1, e2] have the boundary condition
bctype ∈ {PRES,VELO, ADMI} with value v0. Using PRES the sound pressure can be fixed for the element, if
the pressure is set to zero, the element is sound soft. Using VELO the particle velocity can be fixed for the given
element, if the velocity is set to zero, the element is sound hard. With ADMI an admittance can be assigned to

the element to, e.g, model sound absorbing materials. In general, elements can only have one type of boundary

condition, however, it is possible, that elements can have a VELO as well as an ADMI boundary condition. If no

condition is assigned to an element, it is automatically assumed to be sound hard.

As sound-absorbing behavior can be frequency dependent, ADMI conditions can be combined with a piecewise

linear curve (see Sec. 3.1) that maps each frequency step to a scaling factor for the admittance.. In case of

the ADMI condition curve1 and curve2 can contain the number of the curves used to describe the frequency-

dependence of the real and imaginary part of the admittance. The frequency steps themselves have already been

defined for the frequencies (see Sec. 3.1). If no frequency-dependence is needed, the number for the curve is

set to -1. The boundary condition section is closed using the keyword RETURN.

3.3.1 Example

In the following, we assume an example with different boundary conditions to illustrate the different options in

NC.inp. Elements 0 to 10 are sound soft, element 11 has a velocity of 1.0m/s, elements 50 to 52 have a constant
admittance of 0.1 + 10−4i m3/(P · s) and element 65 has a frequency-dependent admittance that is defined by
the frequency-defining curves 1 and 2. Per default, all other elements are sound hard.

BOUNDARY
ELEM 0 TO 10 PRES 0.0 -1 0.0 -1
ELEM 11 TO 11 VELO 1.0 -1 0.0 -1
#frequency independent admittance
ELEM 50 TO 52 ADMI 0.1 -1 1.0e-4 -1
#frequency -dependent admittance using curves 1 and 2
#the real part is scaled with 1.0, the imaginary part with 0.5
ELEM 65 TO 65 ADMI 100.0 1 10.0 2
# Definition of the boundary conditions is finished ,
# denote this by the keyword 'RETURN '
RETURN
#
CURVES
# number_of_curves max_number_of_points_per_curve
2 4
# curve_number number_of_nodes_defining_curve
1 4
0.0 0.0
1.0 1.0
3.0 4.0
11.0 8.0
# curve_number number_of_nodes_defining_curve
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2 3
0.0 0.0
2.0 3.0
10.0 6.0

Listing 5: Definition of boundary conditions plus frequency-defining curves for the admittance.

For the admittance two curves are defined for real and imaginary part, respectively. Curve 1 consists of 3 linear

segments with nodes (Sj , Vj) at (0.0, 0.0), (1.0,1.0), (3.0, 4.0) and (11.0,8.0). Curve 2 for the imaginary part
consists of 2 linear segments with nodes (Sj , Vj) at (0.0,0.0), (2.0,3.0), and (10.0,6.0). Thus, different curves
do not necessarily need to have the same number of nodes. The parameters for Number_of_freqsteps,
stepsize and Index0 are have already been defined in the frequency section Lst. 1. To provide an example

we choose two arbitrary frequency steps (n = 1 and n = 6). Similar to Eq. (1) the real part of the admittance
αn is given by

Re(αn) = Re(v0)

(
Vj +

Vj+1 − Vj

Sj+1 − Sj
(i0 + n · hi − Sj)

)
, nhi ∈ [Sj , Sj+1], (2)

the imaginary part is defined in the same manner. The definition of the curves in Lst. 5 implies that at f1 =
1000Hz (frequency-step n = 1) element 64 has an admittance of α1 = 100.0 · 1.0 + 10 · 3

2 i = 100 +

15i, at 6000Hz (n = 6), for example, the element has an admittance of α6 = 100.0
(
4 + 8−4

11−3(6− 3)
)
+

10.0
(
3 + 6−3

10−2(6− 2)
)
i = 550 + 45i.

3.4. Sound Sources

External sound sources can be provided by a combination of point sources and plane waves. A point source

ppoint(x) := P0
eik||x−x0||

4π||x−x0|| at a source point x0 is defined by its number, the coordinates of its origin (X0,Y0,Z0)
and its source strength P0:

POINT
Nr X0 Y0 Z0 Real(P0) -1 Imag(P0) -1

A plane wave pplanewave(x) := P0e
ikd·x, ||d|| = 1 with direction (DX,DY,DZ) and strength P0 is given by

PLANE
Nr DX DY DZ Real(P0) -1 Imag(P0) -1

Additionally, it is also possible to define arbitrary elements of the scatterer as a “vibrating” source by setting

the appropriate VELO boundary condition; in this case the source strength is defined by VELO = v0.

4 Benchmark example

In our opinion, it is important that users of NumCalc are aware of the accuracy they can expect from the nu-

merical solutions with NumCalc. In the following we look at the benchmark example of a scattered plane wave

from a sound-hard sphere with radius r = 1m. For this example, the acoustic field on the sphere and outside the
sphere is known cf. [15, Chapter 6.10.3] and can be compared with the numerical BEM solution. In Fig. 3, the

sound field for two frequencies (f1 = 200Hz and f2 = 1000Hz) with speed of sound c = 340m/s is shown.
The sphere was discretized using 20480 triangular elements, the average edge length of the elements was about

0.037m. The triangularization itself is based on an icosphere, thus the triangles are almost equilateral.

On a computer with an Intel Core i5-4430 processor and 8 GB RAM, the calculation for f1 = 200Hz took about
40 s, where 15 s were used for calculating the field on 24874 points outside the sphere, the iterative solver was
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finished after 26 iterations with an relative error of 2.3 ·10−10. At f2 = 1000Hz the iterative solver was stopped
after 17 iterations (rel error 5.8 · 10−10), the total amount of calculation time was 68 s, where 41 s were used for

calculating the sound field outside the sphere. In Fig. 4 the difference of the dB value of the sound pressure at
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Figure 3: Acoustic field around a sound hard sphere at 200Hz and 1000Hz.

the sphere is depicted for two different types of discretizations at a frequency of f2 = 1000Hz. On the left and
the middle panel the sphere was discretized using 5292 triangles that were constructed using a projection of a

cube to the sphere, on the right panel the sphere was discretized with 5120 elements, where the triangularization

was based on an icosphere. It is clearly visible that the regularity of the triangles has a lot of impact on the

difference between BEM and analytic solution. In the case of the very regular icosphere triangularization a

maximum difference of about 0.5dB could be observed on a few elements, the mean error over all elements of

this discretization was about 0.114 dB. For the other triangularization the maximum difference was even in the

range of 1.5 dB, the mean error was about 0.183 dB, and in contrast to the icosphere triangularization there was

a clear distinction between “sunny” and “shadow” side, i.e. the side oriented towards the plane wave and the

side oriented away from the plane wave.
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Figure 4: Difference between the dB sound pressures for the BEM calculation and the analytical

solution at f2 = 1000Hz. Left: “Sunny”side, discretization based on a projected cube. Mid-

dle: “Shadow” side, discretization based on a projected cube. Right: Discretization based on an

icosphere, “sunny” side.

Dependence on the number of elements

For most problems in practice, 10 elements per wavelength provide users with a solution that is sufficiently

accurate. To illustrate the accuracy to be expected when using NumCalc, Fig.5 shows the mean relative error
|p−pa|
|pa| as a function of the number of triangular elements N . As a triangularization based on an icosphere is

very restrictive in terms of number of elements, the discretization in this subsection is based on projecting a

cube onto the sphere, which has the drawback, that the triangles are not as regular as for an icosphere. p is the

450



sound pressure calculated with NumCalc, pa is the sound pressure calculated using an analytic expression, cf.
[15, Chapter 6.10.3]. The error is given as the mean error over all collocation nodes on the sphere (continuous

line) and as the mean sound pressure over evaluation points around the sphere (dashed line). These points are

the same 24874 points that were used for depicting the field outside the sphere in Fig. 3. The dotted lines depict

the function g = 1√
N
. From Fig. 5 it becomes clear that the simplicity of the collocation method with constant
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Figure 5: Mean relative error
|p−pa|
|pa| between the calculated sound pressure p and the analytic

solution pa on the surface of the sphere (continuous line) and on the evaluation grid (dashed line)
as a function of the square root of the number of elements N . On the left side the frequency was

set to f1 = 200Hz, on the right side f2 = 1000Hz. The average edge length of the elements used
in the BEM are proportional to

√
N . The dotted line depicts the function g = 1√

N
.

elements has to be paid with a low convergence order of the error as a function of the number of elements. Also,

the rise in the mean error in Fig. 5 for the case f1 = 200Hz shows the known fact, that the accuracy of the BEM
solution suffers at low frequency when the mesh is too fine.

The rise in the error is also caused by the fact, that in the default setting, some numerical parameters, e.g. the

truncation parameter of the multipole expansion or the accuracy of the quadrature methods for integrals over

elements, are set rather small. This low setting on the one hand means, that the accuracy suffers, but on the

other hand, the calculations become faster. Using a higher order in the FMM and a higher quadrature order for

the integrals over the elements can stop this rise in the relative error.

5 Conclusion

In this paper, the open source software project Mesh2HRTF and the BEM code NumCalc have been presented

briefly. Mesh2HRTF and NumCalc are aimed at providing a simple and easy-to-use method to solve acoustic

wave propagation problems in 3D using the boundary element method. Input parameters have been described

briefly and an example was given to illustrate the accuracy of the code. For in-depth tutorials and examples we

refer to the homepage of Mesh2HRTF [16], where also the development version of the upcoming 1.0 release

can be found, or the Wiki page for Mesh2HRTF [8]. There, also a list with the most common errors used in

connection with Mesh2HRTF and NumCalc can be found.
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