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Abstract : 

We study the ultrasonic wave transmission and diffraction 
in homogeneous and isotropic medias. In this aim, we use a 
coupled numerical formulation by boundary and finite 
element methods (BEM/FEM). 
The domain concerning limited inclusion is treated by finite 
elements, the unlimited domain is handled by boundary 
elements method. 
The coupled formulation is validated using analytical 
solution. Stoneley interface mode and plane wave 
diffraction by cylinder are presented in this work. 
Introduction 

The modelling of the NDT experiments by sound waves 
has been the object of several works. The use of numerical 
methods asks for heavier means but allows raising a big 
number of restrictive hypotheses for analytical methods. 
We present here a numerical coupling method BEM/FEM 
applied to elastodynamic problems. 

The finite element method allow modelling diverse 
anisotropic elastic inclusions. The boundary element 
method allow implicit using of radiation condition at the 
infinity when unlimited homogeneous elastic domain is 
considered. 

The coupled methods differ generally, one of the others, 
by the choice of the integral formulation in use, or by the 
consideration of the conditions of continuity… 

Costabel et all [1] presented a general mathematical 
concept of the use of a coupled formulation BEM / FEM 
for the acoustoelastic harmonic problem. They use a 
variational formulation in displacement form FEM, and a 
variational direct integral representation BEM. Writing 
continuity conditions for displacement and stress vectors on 
the coupling interface in integral form allows obtaining a 
non-symmetric global formulation. 

Polizotto [2] provides many forms of variational 
approach in FEM domain based on Hu-Washizu or 
Hellinger-Reissner instead of the variational displacement 
form. In BEM domain, he uses a variational approach based 
on indirect integral representations. All forms are used in 
static case, their extension in the elastodynamic does not 
raise particular problems. 

Han-Hou [3] presents some coupled BEM/FEM 
formulation applied to static problems. He uses a 
variational in displacement form of FEM domain, and 
variational BEM formulation based on direct integral 
representation. The continuity of the normal stress to the 
interface between both domains, written in two constituents 
among which the one obtained  using the complete 
representation, allows him to obtain a symmetric global 
formulation. The extension of this approach in the 
elastodynamic is immediate. 

We resolve the interface coupled problem in elastic wave 
propagation, where the BEM is based on indirect approach. 
Classical variational approach FEM in displacement form is 

used. Analytical developpements validates the numerical 
model. 
Motion equations 

In 2D and linear elastodynamic, we consider a body Ω as 
shown in Figure 1. Ω= Ω1 ∪Ω2, with regular boundary 
Σ= cΣ  ∪ uΣ . 

 
Figure 1. Geometry of the interface problem. 

The governing equation for displacement vector is 
expressed as: 

2( ) 0, 1..2i i idiv u iσ ρ ω+ = = , (1) 
where  iσ  is the stress tensor in Ωi: 

: 1, 2i i iC i= =σ ε . (2) 
An incident field is considered in Ω1, the total 

displacement is decomposed in uinc and u1: 
1 1T incu u u= + . (3) 
u1 satisfies the radiation condition at infinity. 
Ω1 and Ω2 are coupled by the boundary cΣ , and 

continuity is applied to total components of displacement 
and stress:  
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Formulations  
The coupling process used in this work is the following: 
In the variational principal applied to Ω2 we use 

continuity condition (4) b thus t2 is replaced with the 
integral representation. The continuity condition for 
displacements and the boundary condition on Σu are applied 
to displacements in integral form for u1. 

Finally, we obtain three integral equations with three 
unknown variables u2 in Ω2, ψ on cΣ  and σ on uΣ . 
The coupling boundary ∑c is divided into linear elements 
(L2). A piecewise linear variation along each boundary 
element is assumed for unknowns ψ  and σ . The 
displacement u2 in Ω2 is interpolated with linear shape 
functions and (T3) element is used. 

We obtain a non symmetric assembled matrix given by : 
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[ ] [ ]G , T and [ ]Σ are assembled matrix relating 
respectively to the displacement kernel , stress kernel and 
the hyper singular kernel. [ ]I is the identity matrix. 
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Validation  
Plane wave diffraction by inclusion: 

The numerical formulation is validated using analytical 
solution of plane wave diffraction by cylindrical 
homogenous inclusion [4].  

We present a superposition in polar representation 
obtained by analytical solution and coupled numerical 
formulation for radial displacement modulus.  

The internal domain is a circular homogenous or square 
homogenous inclusion. In the Figure 2a more important 
back scattering is shown in the case of plane interface. In 
Figure 2b circular inclusion is considered, so we notice that 
diffracted lobes are generated when inclusion stiffness is 
greater.  

a.  

b.  
Figure 2. Stiffness and geometry effect for plane wave 

diffraction. 

In Figure 3a we consider orthotropic inclusion (x, y 
principal directions), we notice that the evolution of mean 
energy flux in y direction increases when inclusion stiffness 
Ey increases. We show also in Figure 3b that for many 
incidences angle, the mean energy flux is diverted in 
different directions for fixed elastic properties of the 
circular inclusion.  

a.  

b.  
Figure 3. Anisotropic and incidence effect for plane 

wave diffraction. 

Stoneley modal wave problem in interface: 
Consider two elastic half spaces in perfect contact. The 

usual equation of motion is resolved to find modal solution 
for wave propagating in the x and y directions that vanishes 
when y increases [5]. For the real roots of the dispersion 
equation, we find (numerically) the wave number solution 
for a given frequency f. The modal solution is then injected 
as boundary condition on coupled domains. We compare in 
Figure 4, numeric and analytic displacements given in the 
two domains. This kind of mode is shown in the case of 
plane wave diffraction, independently of the chosen 
frequency, and of the inclusion geometry, we noticed the 
generation of this type of modal wave on the interface. 

Figure 4. Stoneley modal case validation for the interface 
Alu/Tung. 

Conclusion  
We present in this work a numerical coupled formulation 

by FEM and BEM applied to interface problem and wave 
transmission. This formulation is validated for plane wave 
diffraction using analytical solution. We discussed effects 
of stiffness, geometry and incidence angle on wave 
diffraction. We show interface wave generated in this case, 
so we have given for the case of Stoneley mode a numerical 
validation by the coupled method. The coupling method 
gives very accurate results for low meshing criterion. 
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