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This presentation focuses on the numerical computation of linear vibrational modes, or Floquet Forms, of
mechanical systems in periodic states such as rotating machineries with imperfections or any structures that are
in compressive or tensile periodic states. To make our point, we present an original spectral method through the
fundamental example of the oscillations of a 2D bi-articulated bar submitted to a periodic compressive load at its
end. We show that Floquet Forms generalize the concept of classic modal analysis for structures in equilibrium
states. Because of the complexity of the frequency spectrum of Floquet Forms as compared to the classic harmonic
modes of vibration, the type of instabilities encountered by periodically-varying structural systems is naturally
much richer than systems in equilibrium.

1 Context and need
Modal analysis is a key concept in structural mechanics

and is today commonly used by engineers in various fields
such as Civil Engineering, automotive, aerospace or rotor-
dynamics industries. It especially allows to reveal intrinsic
vibrational properties of structures in equilibrium states,
as well as their local stability, and it is therefore often a
necessary step in the design of structures.

Thanks to Floquet theory [1], it should be possible
to extend this modal approach to structures in periodic
states, i.e. structures with mechanical or geometrical
properties that vary periodically with time. Modal analysis
of structures in periodic states could be of practical interest
for many problems in mechanical engineering including
the vibrational behavior of rotating machineries with
imperfections, the design of structures submitted to periodic
compression or tension loadings or the stability analysis of
structures undergoing large oscillations [2]. Surprisingly,
to the best knowledge of the authors, this generalization
of modal analysis has never been completely and clearly
implemented. Due to the conceptual complexity of the
vibrational analysis of structures in periodic states, the
developed numerical methods mostly focused on dynamic
stability [3, 4], neglecting the modal informations that are
either ignored, inaccurate or even inaccessible from the
computations. As a consequence, the natural link between
modal analysis of equilibrium and periodic states yet
suggested by Floquet remains largely unknown by the
structural engineer and researcher community.

2 Task and Findings
Here, through the archetypal example of a 2D bi-

articulated bar submitted to a periodic compressive load at
its end as illustrated in Fig.1.a, we present an original and
accessible spectral numerical framework that generalizes
the modal analysis of structures in equilibrium to structures
in periodic states. Although apparently simple, this
fundamental system encounters all the classic instabilities of
2-dimensional dynamical systems that can be easily sorted
depending on the fundamental frequency of the state Ω and
the parameter η as illustrated in Fig.1.b-e.

Thanks to a single algorithm based on the sorting of the
eigenvalue spectrum of Hill’s matrix [5], our method allows
to compute Floquet forms (FFs) of periodically conservative
or non conservative systems. FFs are almost periodic modal
entities reducing to classic harmonic vibrational modes
for the particular case of structures in equilibrium states
(for a system such as the one illustrated in Fig.1.a, FFs are
simply the 2 modes of vibration of the originally straight
bi-articulated bar). Like for classic modal analysis, FFs
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Figure 1 – (a) The system under study is a bi-articulated bar
submitted to a compressive load with a period T = 2π/Ω at
its end. The load is either periodically conservative (η = 0,

i.e. horizontal force) or non conservative (η = 1, i.e.
following force). (b) Steady-state bifurcation on a

T -periodic orbit (Ω , 0 and η = 0). (c) Neimark-Sacker
bifurcation on a almost-periodic orbit (Ω , 0 and η = 1). (d)

Static bifurcation on a new equilibrium state (Ω→ 0 and
η = 0). (e) Hopf bifurcation on a T -periodic stationary state

with T , 2π/Ω (Ω→ 0 and η = 1).

carry the intrinsic vibrational signature of the structure
and their spectrum allows to assess the linear stability of
the periodic state as illustrated in Fig.2.b-e. In the general
case when Ω , 0, the almost-periodicity of FFs as well
as the dependency of their frequency spectrum on Ω can
cause the periodic state to lose stability and consequently
lead to steady-state, period doubling or Neimark-Sacker
bifurcations as illustrated in Fig.1.b,c and Fig.2.b,c. In the
particular cases when Ω → 0, FFs reduce to harmonic
eigenmodes and the equilibrium state can eventually become
statically or dynamically unstable depending on the loading
parameter A as shown in Fig.1.d,e and Fig.2.d,e. Like in
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classic modal analysis, since FFs are first order perturbations
of stationary states, they carry the kinematic shape and
temporal signature of the bifurcated nonlinear vibrational
responses such as illustrated in Fig.1.b-e. Their computation
and analysis is therefore crucial for the design of structures
in periodic states.
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Figure 2 – Argand representation of the spectrum s and s̄ of
the 2 Floquet Forms of the system shown in Fig.1.b-e at the
onset of bifurcation. (b1) Steady state bifurcation. (b2) Flip

or period-doubling bifurcation. (c) Secondary Hopf, or
Neimark-Sacker bifurcation. (d) Steady-state bifurcation or
buckling. (e) Dynamic instability or flutter leading to a Hopf

bifurcation.

3 Conclusions and perspectives
The algorithm presented in this article is a unified

method to perform modal analysis of conservative or non
conservative systems in periodic states, including equilibria.
This unique framework emphasizes the natural link between
vibrational behavior of standstill and periodically-varying
systems that are common in mechanical engineering. Like
for classic modal analysis, this generalized modal approach
should allow to design a broader range of structures by
computing and analyzing FFs which give better physical
insight and understanding on the linear stability of nonlinear
dynamical systems. This first study on a simple archetypal 2
dof system will pave the way to the modal analysis of real
structures in periodic state with a large number of degrees
of freedom. Due to the linear nature of those entities, the
interesting properties of classic vibrational modes should
remain with FFs which could be promising candidates for
modal reduction for structures in periodic states or predictors
in nonlinear algorithm such as Newton-Raphson method to
compute nonlinear periodic orbits of vibrating structures.
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