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In a previous paper, the authors have explored the potential of hidden Markov models in rolling element
bearing diagnostics. Based on the Gabor transform, noisy measurements are decomposed in time and frequency,
respectively. Then a stochastic model is built in each frequency band. As an extension of the former one, this paper
introduces a more exact model which considers a latent variable as a switch corresponding to different distributions
and a more complex spectral structure. Therefore, different types of fault based on distinct structures of spectral
correlation are separated and estimated. The estimated latent variable carries the information according to the
spectral structure. Based on the developed model, a new fault separation scheme is proposed. And the performance
is demonstrated by simulated and experimental cases. In simulated case, it reveals expected fault frequencies even
in heavy background noise when noise to signal ratio is high. For experimental case, it achieves the superior results
to the classical envelop analysis.

1 Introduction
Rotating and reciprocating machines contain various

types of rolling element bearings, even a minor loss of
material on the surface probably leads to a heavy accident
in industrial operation. This is an important reason that
fault diagnosis attracts a consistent attention during a long
history[1]–[7]. As the rolling surface impacts a local defect,
a series of impulse response will be excited. Normally, the
impulse response has a short duration which corresponds
to some structural resonances in high frequency. In terms
of the excitation, we assume that it follows a periodic
behavior which carries information of different fault types
(e.g. inner race, outer race and rolling element fault). Due
to the load distribution, the series of impulse responses are
amplitude modulated by the period of passing into and out
of the load zone. Therefore, according to the kinematic and
geometric parameters, the expected fault frequency could be
calculated exactly as shown in [1]. However, in engineering
application, these assumptions is of course an idealization :
the interval between two adjacent excitations is not strictly
periodic due to random slips ; the magnitude of each impulse
is not uniform because of the random fluctuations. Even
with a small random component, the harmonic structure will
be destroyed completely and vanished in high frequency[2].
As an intermediate between stationary and non-stationary
signals, cyclostationary process idealy satisfies the feature of
rotating machinery. More precisely, rolling-element bearing
vibrations are random cyclostationary whose second-order
statistics are pseudo-periodic[2, 3].

To follow our related work[4], the former model
and assumption should be reminded briefly. The noisy
measurement is modelled as a linear combination of a few
individual Gaussian distributions along each frequency
bin based on the short-time Fourier transform(STFT). The
preliminary results demonstrate the potentiality of the
proposed model. As mentioned above, the vibration signal
in practice is much closer to cyclostationarity. In a short
duration, the signal is assumed stationary. To the contrary,
in a longer duration, it has a pseudo-periodic feature. As a
time-frequency plane, the STFT implies the instantaneous
power spectral density which carries the inherent property
varing with time instant. This is the reason that the raw
measurement is transformed by the STFT which fits well
with the basic assumption. As an extension of the former
one, this paper introduces a more exact model which
considers a latent variable as a switch corresponding to
different distributions and a more complex spectral structure.

The rest of the paper is organized as follows. Section
2 presents the assumption and the mathematical model. In
section 3, a new fault separation scheme is proposed. After

that, the performance of proposed method is analyzed and
compared with the classical envelop analysis in section 4.
Finally, the conclusion is made in section 5.

2 Spectral mixture model and its
assumption

Let denote the signal of interest x(t) which is
contaminated by an additive background stationary noise
n(t). Then the noisy measurement y(t) is modelled as :

y(t) = x(t) + n(t). (1)

As discussed before, the vibration signal is a second-
order cyclostationary process. The time-frequency plane
reveals the fault signatures in both time instant and frequency
bin. The STFT of signal x(t) over a time interval of length
Nw is defined as :

S T FTx(k, fb) =

kR+Nw−1∑
n=kR

wk[n] · x[n] · e− j2π fbnk/Nw (2)

where {wk[n]}Nw−1
n=0 denotes a positive and smooth Nw–long

data–window which shift R samples (from 1 to N) to truncate
a segment of x(t) at times kR, ..., kR+Nw-1, then let fb denote
the frequency bin index and nk denote a local variable (from
0 to Nw-1) related to the time instant k.

In the following model, the phase information will play
a crucial role. It is required to correct all the segments to
the beginning of the signal, at time instant t = 0. This phase
correction also has the same function of the Gabor transform,
denoted by :

XG(k, fb) = S T FTx(k, fb)e− j2πkR fb/Nw . (3)

XG(k, fb) means the “instantaneous complex envelope” of
signal x(t) in a narrow frequency band ∆f centered on fb and
sampled at time index k. The squared magnitude of XG(k, fb)
reflects the energy flow which is mapped by time index k
and frequency index fb centered in a narrow frequency band
∆f.

Hereafter, the measurement y(t) is represented by a
linear combination of components with different spectral
covariance matrices :

YG(k, fb) = ζ(k)X(k, fb) + N(k, fb) (4)

where ζ(k) denotes the proposed latent variable with
Bernouilli distribution ζ(k) ∼ Bernouilli(π) :

p(ζ(k)) = πδ(1 − ζ(k)) + (1 − π)δ(ζ(k)). (5)
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Here ζ(k) = 0 means noise only and ζ(k) = 1 indicates the
signal of interest.

Following the assumption above, let deduce the
conditional probability :

p(YG(k, fb) | ζ(k)) ∼ CN(0,Cn + ζ(k)Cx) (6)

where CN denotes the circularly-symmetric complex normal
distribution with the unknown covariance matrices Cn and
Cx corresponds to the noise and the signal of interest,
respectively. Then the marginal probability function can be
written as :

p(YG(k, fb)) =
∑
ζ(k)

p(YG(k, fb) | ζ(k))p(ζ(k)) (7)

The posteriori probability can be denoted by :

p(ζ(k) | YG(k, fb)) =
p(YG(k, fb) | ζ(k))p(ζ(k))

p(YG(k, fb))
(8)

Hereinbefore, the Spectral mixture model and its
assumption are demonstrated. To estimate these parameters
of Gaussian densities, the maximum-likelihood parameter
estimation is employed as mentioned in [4].

3 Proposed fault separation scheme
In this study, we propose a new fault separation scheme

based on the spectral mixture model. The detailed steps are
as follows :

1. Transform the raw signal into time-frequency domain
using the phase-corrected STFT (see Eq.3), it shows
the “instantaneous complex envelope” of signal x(t)
in a narrow frequency band ∆f centered on fb and
sampled at time index k.

2. Assume the noisy measurement is a linear combination
of components with different spectral covariance
matrices (see Eq.4). The proposed spectral mixture
model considers a latent variable as a switch
corresponding to different distributions and a more
complex spectral structure.

3. The EM algorithm is employed to estimate the
probability of latent variable and the corresponding
parameters of different components.

4. Based on the estimated parameters and probability
of latent variable, the underlying information can
be separated (as shown in following section). An
indicator of latent variable is calculated and therefore
the expected fault frequency is shown.

4 Numerical and experimental validations
This section contains two parts corresponding to

numerical and experimental validations. The first one aims
to demonstrate the ideal performance with known parameter
values, especially, when the noise to signal ratio reaches a
high value. The other one attempts to show the effective
performance with real data and the comparison with the
classical envelop analysis.

4.1 Numerical validation
The first part presents numerical results. A synthetic

signal is generated on the same condition as described in
[4]. Figure 1 shows the spectrogram of the raw signal when
the noise to signal ratio is 6 dB. With Nw = 28 long hanning-
window, the likelihood ratio in logarithm and estimated ζ(k)
are demonstrated in Figure 2 and 3, respectively. From the
likelihood ratio and estimated ζ(k), both of them demonstrate
the expected time intervals as shown in Figure 1. To see
clearly the corresponding spectral structure, the estimated
Cn and Cx are indicated in Figure 4.

Figure 1 – Spectrogram

Figure 2 – Log likelihood ratio

4.2 Experimental validation
To demonstrate the effective performance of the proposed

fault separation scheme, three different types of fault are
tested. The tested data is supported by the Vibrations and
Acoustics Laboratory of the University of New South
Wales (Sydney). The system of the test-rig is a one-stage
gearbox with primary and secondary shafts supported by
ball bearings, with bearing characteristic frequencies in Hz
listed in Table 1.

The first tested signal is denoted by an inner race
fault. Figure 5 displays the logarithmic likelihood ratio in
frequency domain and the corresponding envelope spectrum
of the full bandwidth signal is shown as comparison in
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Table 1 – Bearing characteristic frequencies (Hz)

Primary shaft rotation speed 10

Ballpass frequency, inner race (BPFI) 71.10

Ballpass frequency, outer race (BPFO) 48.90

Fundamental train frequency (FTF) 4.08

Ball (roller) spin frequency (BSF) 26.11

Figure 3 – estimated ζ(k)

Figure 4 – estimated Log Cn and Cx

Figure 6. It is evident that Figure 5 reveals the expected
harmonic structure of inner race fault.

The second analysed signal is denoted by an outer
race fault. The estimated logarithmic likelihood ratio and
corresponding envelope spectrum are displayed in Figure 7
and 8, respectively. The suspected harmonics of BPFO are
presented clearly, and meanwhile there are some harmonics
of shaft speed in the low frequency.

The last tested signal is denoted by a ball fault.
Figure 9 and 10 display the logarithmic likelihood ratio
and corresponding envelope spectrum, respectively. It is
noted that for the ball fault case there are harmonics of
BSF (with dominant even harmonics of BSF) surrounded by
modulation sidebands at cage speed (FTF).

All of these cases illustrate the superiority of the proposed
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Figure 5 – Log likelihood ratio in frequency domain

Figure 6 – Envelope spectrum
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Figure 7 – Log likelihood ratio in frequency domain

fault separation scheme compared with the classical envelop
analysis.

5 Conclusion
This paper is an extention of previous work which

improves the former model and assumption. To address the
problem of fault diagnosis, a more realistic model was built
which considers a latent variable as a switch corresponding
to different distributions and a more complex spectral
structure. The proposed spectral mixture model contains
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Figure 8 – Envelope spectrum
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Figure 9 – Log likelihood ratio in frequency domain

Figure 10 – Envelope spectrum

the symptomatic information based on a second–order
cyclostationary assumption, yet displaying it in the latent
varible and corresponding spectral covariance matrix.
Finally, a new fault separation scheme for the vibration
signal is proposed and verified with numerical and realistic
experiments.
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