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La propagation du son dans un metamatériau acoustique constitué d’un réseau unidimensionnel de fentes minces
chargées par des résonateurs de Helmholtz est etudiée. Un modèle analytique est présenté, dont la limite
asymptotique basses fréquences permet de déterminer les paramètres effectifs du metamatériau acoustique. La
relation de dispersion dans la fente est modifiée par la présence des résonateurs dans le régime basses fréquences.
La vitesse de propagation dans celle-ci est drastiquement réduite et par conséquence une propagation lente du
son est observée. L’effet principal de cette propagation anormale est une accumulation des résonances à la borne
inférieure de la bande interdite due à la résonance de Helmholtz. Chaque résonance correspond à une paire
zéro/pôle des valeurs propres de la matrice de diffusion représentée dans le plan de fréquences complexes. Ces
zéros et pôles sont conjugués l’un de l’autre et par conséquent symétriques par rapportà l’axe de fréquences réelles
dans le cas sans perte. Une fois les pertes du système introduites, les zéros des valeurs propres symétriques et
antisymétriques se rapprochent de l’axe des fréquences réelles, de fac¸on à ce que pour une des résonances les
zéros des valeurs propres symétrique et antisymétrique soient proches de l’axe de fréquences réelles. Cela se
traduit notamment par une réduction importante et simultanée de la réflexion et de la transmission du système,
c’est-à-dire une absorption quasi-parfaite pour cette fréquence dans un système sublongueur d’onde.

1 Introduction
The acoustic absorption of low frequency sound with

sub-wavelength panels is of particular interest because
traditional absorbers, e.g. porous media, requires structures
of the order of the wavelength and, therefore, are not
practical for commercial and industrial applications. Other
typical low-frequency absorbers include perforated panels
of simply resonant plates, but commonly the maximum
absorption achieved is limited.

On the other hand, perfect absorption (PA) is of
particular interest for many applications such as energy
conversion [1], time reversal technology [2], coherent
perfect absorbers [3] or soundproofing [4] among others.
For absorption application it is desirable to avoid bulky
structures and design sub-wavelength structures. The recent
advances in PA have motivated an increasing interest on
the design of perfect absorbers which at the same time are
sub-wavelength structures. Recently in acoustics, impedance
matched sub-wavelength membranes [5] with broadband
perfect absorption [6], quarter-wavelength resonators [7],
unidirectional nearly perfect absorption systems based on
Helmholtz resonator [8] have been shown as sub-wavelength
perfect absorbers.

In this work, we present the design of sub-wavelength
transparent panels considering reflection and transmission
with the coupling between the exterior medium, i.e.,
considering the real leakage of the resonant building blocks
of the structure. We consider flat vertical panels perforated
with slits and Helmholtz resonators (HRs). The inclusion of
HRs induces creates a band-gap at its resonant frequency,
inducing slow-sound conditions in the slit. Therefore, strong
absorption can be achieved at the collective modes of the
HRs. The present work explores the limits of PA achieved
by these sub-wavelength transparent panels.

2 Theoretical models
We consider a flat vertical panel of thickness L perforated

with open slits of height h separated a distance d, as shown
in Fig. 1. A periodic array of a rectangular cross-section
Helmholtz resonators (HRs) was placed in the top of
the slits following a square lattice of step a. The wall
boundary conditions was assumed to be perfectly rigid.
Thermo-viscous looses were included in the slits and the
ducts that compose the Helmholtz resonators by its complex
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Figure 1 – (a) Conceptual view of the panel and (b)
Helmholtz resonator. (c) Scheme of the slitted panel.

and frequency dependent density and bulk modulus [9]. The
HRs impedance, ZHR, was calculated accounting for the end
corrections at the neck-slit and neck-cavity boundaries [10].

A modal expansion method was developed to represent
the field on each Ω[i] domain, where the effect of the
resonators is accounted by a continuous effective impedance
at the wall of the slit, given by Zi = ZHRs/φn with φn = S n/a2

the slit porosity where S n is the cross section of the neck.
Assuming the continuity of pressure between domains,
and considering perfectly rigid boundary conditions for the
walls, the reflection, R, and transmission, T , coefficients can
obtained by solving the mode-matching system.

In the low frequency regime, the effective wavenumber
inside the slits of the panel is

ke = k[1]
2 =

√
k2

1 − k2
10 (1)
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Figure 2 – (a) Dispersion relation in the slit using (red)
TMM, (blue) full modal expansion and (black) effective

parameters. (b) corresponding attenuation.

with
k10 = 1/h

√
−iωρsh/Z1 (2)

the transversal component of the wavenumber. Then, using
the Helmholtz resonator impedance, Z1 = ZHR/φn, the
complex and frequency dependent effective density and bulk
modulus of the slit become

ρe =
ρs

φ
(3)

and

Ke = Ks

[
φ

(
1 +

Ks(S clcKn + S nlnKc)φn

Kn
(
S nKc − lnS clcρnω2) h

)]−1

, (4)

where S i and li are the surface and length of the i element
of the resonator, the subscript s, n and c denotes the slit,
neck and cavity of the HRs and the total porosity φ = h/d.
In the lossless case, Kn = Kc = Kair and ρn = ρc = ρair,
therefore, the low frequency branch of the phase speed can
be expressed as cef f = ca/

√
1 + Vtotφn/hS n. The use of

effective parameters allows the calculation of reflection and
transmission coefficients, and finally, the absorption of the
system as α = 1 − |T |2 − |R|2.

The full modal calculation and its low frequency
approximation assumes a wall impedance at the interior
faces of the slits, leading to an infinite number of resonances
in the slow sound regime. However, in reality the number
of resonances is effectively N − 1, being N the number of
resonators in the slit, imposing limitations to the application
of slow sound for designing acoustic absorbing systems
[10]. Therefore, a discrete model is developed accounting
for the finite number of resonators using the Transfer Matrix
Method (TMM) [10], in which the end correction is included
for accounting for the radiation of the periodic arrangement
of slits.
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Figure 3 – (c-f) Complex frequency plane of the symmetric
and anti-symmetric scattering matrix for the TMM method

and impedance model (effective parameters).

3 Results

3.1 Purely periodic structures
Figure 3 summarizes the results for a panel with

N = 6 equally sized resonators. The dispersion relation
in the interior of the slit is shown in Fig. 3 (a). It can be
noticed how when resonators are included an hybridization
band-gap is generated at the resonance frequency of the
HRs. Therefore, in the first band slow sound conditions
are achieved, where the asymptotic value given by ce f f is
observed in the low frequency regime. Furthermore, for
frequencies just below the band gap extremely slow sound
is observed, where sound absorption can be achieved at the
induced resonant frequencies kL/π = 1, 2, . . .. In addition,
important differences are observed between the calculation
with impedance models and using TMM. The full modal
expansion, red curve in Fig. 3 (a), assumes a continuum
wall impedance, Z1 = ZHRs/φ, and therefore, the effect of
the finite number of resonators is not included. In contrast,
this effect is accounted by TMM, blue curve in Fig. 3 (a).
The result of including N resonators is that the number of
possible low-frequency resonances is limited to N −1, which
are in fact the possible collective modes of the HRs [10].

A more clear view of this phenomena can be observed
in the complex frequency plane representation of the
transmission and reflection matrix. Figure 3 (c-f) shows
the quantities |R − T |2 and |R + T |2 corresponding to the
zero-pole structure of the symmetric and anti-symmetric
problem respectively. First, it can be observed that the
zero-pole structure for the impedance model, Fig. 3 (e-f),
presents an infinite collection of zeros and poles that are
stretched around ωHR. By contrast, the corresponding
structure obtained by TMM, Fig. 3 (c-d), the number of
zeros/poles is limited to N − 1. Secondly, it can be observed
that the zeros of the symmetric problem, ωZ

sym, are located
at frequencies staggered to the zeros of the anti-symmetric
ωZ

asym. It is worth noting here that perfect absorption can
only be achieved if both, the symmetric and antisymmetric
zeros for a given frequency are located in the real axis,
Im(ωZ

sym) = Im(ωZ
asym) = 0, i.e. the zeros of the symmetric

and antisymmetric problem must be critically coupled. As
the zero-pole structure is staggered in frequency, perfect
critical coupling is not possible. However quasi-perfect
absorption can be achieved. If a single zero is placed in
the real axis, then the absorption of the system is α > 0.5.
However, as zeros present some frequency-width, the
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Figure 4 – (a) View of the perfect sub-wavelength absorbing
panel.(b) Transmission and reflection using TMM, (c)

absorption.

system properties can be tuned for place a zero of the
anti-symmetric (symmetric) problem as close as possible
to the corresponding symmetric (anti-symmetric) one and,
simultaneously, both as close as possible to the real axis.

3.2 Critical coupling by symmetry breaking
One way to break the symmetry and unstagger the

zero-pole structure is to include HRs of different resonant
frequencies [8]. This situation is presented in Fig. 4. In
Fig. 4 (a-b) the dotted lines indicates the position of the
resonances for N = 2 resonators. In this conditions, the
high frequency resonator acts as a rigid wall and as it can
be observed in Fig. 4 (a) the transmission is forbidden at
band-gap frequencies. Then, the parameters of the lower
frequency resonator can be tuned for include the exact losses
necessary to reduce the reflection. In the complex frequency
plane, this reduces to place both zeros of the symmetric
(R − T ) and anti-symmetric (R + T ) in the real axis as shown
in Fig. 5 (d-e). The absorption of the sample reaches α = 1
for a sample of thickness L/λ0 = 26 with λ0 the wavelength
in air at the resonant frequency.

4 Conclusion
The limits of acoustic absorption in sub-wavelength

transparent panels using slow sound are discussed. The
current work shows that as long the Zero-Pole structure of
the symmetric and anti-symmetric problems is staggered,
no perfect absorption is possible using regular arrays of
resonant elements in a cavity. We show that using different
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Figure 5 – (d-e) complex frequency plane of the symmetric
and anti-symmetric scattering matrix.

resonators the symmetry can be broken and therefore
perfect absorption by critical coupling is achieved for
sub-wavelength thickness transparent panels.
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