
C F A / V I S H N O 2 0 1 6
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The object of this study is the non linear streaming flow created by a mono-frequency standing wave inside a
cylindrical resonator. For large values of the nonlinear Reynolds number, the streaming pattern predicted by
Rayleigh in the slow regime is distorted and new contra-rotating cells appear in the resonator core. Recently, it has
been shown that this behaviour cannot be solely attributed to the effect of inertia.
In the present study it is shown that the radial component of the acoustic velocity plays a key role in the streaming
pattern evolution when the flow regime evolves from slow to fast. The acoustic velocity field is computed by
solving compressible Navier-Stokes equations under the assumption of isentropic flow. As expected, in the slow
regime the radial acoustic velocity varies linearly with the radial space coordinate outside the boundary layer. In
the fast streaming regime, this acoustic velocity component is modified greatly and the zone of linear variation is
significantly reduced. Moreover the radial acoustic velocity amplitude increases during the fast regime and reaches
the same order of magnitude as the radial streaming velocity amplitude. Therefore there exists a strong interaction
between acoustic and streaming velocity fields in the fast regime through the radial components which, to our
knowledge, was not highlighted until now.

1 Introduction
Acoustic streaming consists of a mean flow, of second

order, which is produced by the interaction between the
acoustic wave and a solid wall. When the acoustic wave is
of small amplitude, slow streaming is produced. In this case,
analytical models have been established [1, 2, 3] that show
that the streaming velocity has a quadratic dependence in
function of the acoustic velocity. When the acoustic velocity
amplitude increases, previous experimental and numerical
studies [4, 5, 6] have shown that the streaming flow is
modified. In certain cases, an additional outer streaming
cell is generated. Moreover a change of regime is observed
for the streaming velocity dependence upon the acoustic
velocity, evolving from a quadratic function in the first
(slow) regime to a linear function in the second (fast) regime
[7, 8]. In previous studies, the distortion of the streaming
pattern when the acoustic amplitude is high was explained
as non linear effects of inertia [9, 10], characterised by the
non linear Reynolds number ReNL = (M × R/δν)2, where
M is the acoustic Mach number, M = Uac/c0, with Uac the
maximum acoustic velocity on the axis and c0 the initial
speed of sound, R the radius of the channel and δν the
viscous boundary layer thickness. However we showed [7]
that the sole effect of inertia cannot be responsible for the
observed behaviour.

In the present paper we study the influence of the radial
component of the acoustic velocity when streaming flow
evolves from the first regime to the second regime. In order
to exclude thermal effects, the flow is considered to be
isentropic. Two codes are used to this effect. A first code
(DNS) is used to solve the full Navier-Stokes compressible
equations, providing both the acoustic and streaming fields.
The standing wave is excited by imposing a sinusoidal
vibration of all resonator walls along the main axis, at
frequency corresponding to the lowest resonant acoustic
mode of the waveguide. A second code (AMS) solving the
time-averaged Navier-Stokes compressible equations was
developed, where an acoustic flow field provided by the
first code is used as a source term. This code is used to
study separately the effect of each source term associated
to different correlations of acoustic velocity components. It
is shown that the radial component of the acoustic velocity
plays a key role in the streaming behaviour when streaming
flow evolves from the first regime to the second regime, and
that there exists a strong interaction between acoustic and
streaming flows in the second regime.

2 Problem description and numerical
method

We consider a cylindrical tube of length L and radius R,
initially filled with air at pressure p0 and density ρ0 equal to
101325 Pa and 1.2 kg/m3. The viscosity of air is supposed
to be constant, µ = 1.795 10−5 kgm−1s−1. In order to initiate
an acoustic standing wave in the channel, it is shaken in
the longitudinal direction (z), so that a harmonic velocity
law is imposed, V(t) = (V(t), 0)T , with V(t) = zpω cos(ωt),
ω being the angular frequency and zp the amplitude of the
channel displacement. Acoustic streaming flow is created
as a result of the interaction of the imposed plane standing
wave and the channel wall. In this paper, streaming flow
is calculated from solving a system of averaged equations,
over an acoustic period. These equations are derived from
the instantaneous system of compressible Navier-Stokes
equations, by decomposing each variable into a fluctuating
periodic component (i.e. acoustic component) and a
steady component (corresponding to the streaming flow),
(v, ρ, p) = (v + v′, ρ + ρ′, p + p′), v being the velocity and
the average operator being denoted by an overline:

∂ρ

∂t
+ ∇ · (ρv) = −∇ · (ρ′v′)

∂ρv
∂t

+ ∇ · (ρv ⊗ v) + ∇p = ∇ · (¯̄τ) − ∇ · (ρ′v′ ⊗ v

+v ⊗ ρ′v′ + ρv′ ⊗ v′ + ρ′v′ ⊗ v′)

(1)

where ¯̄τ is the viscous tensor. The averaged products can be
obtained by running a previous direct numerical simulation,
based on the instantaneous complete system equations [10].
After a periodic state has been attained, at each time step
the fluctuating fields can be obtained from the difference
between the instantaneous field and the time averaged
field, and the time averaged products of these fluctuating
quantities can be calculated.

The effect of inertia on nonlinear streaming has been
investigated previously [7]. It was shown that the sole
effect of inertia cannot be responsible for the acoustic
streaming behaviour observed for large values of the
nonlinear Reynolds number. In particular, the appearance
of other streaming cells, also observed in DNS simulations
and experiments do not exist when inertia is the only
nonlinear effect taken into account. In the present work,
the study is focused on the effect of the acoustic source
terms represented by the averaged products in the right hand
side of Eq.1. Therefore, streaming flow is calculated as the
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steady solution of the linearised version of Eq.1:
∂ρs

∂t
+ ρ0∇ · (vs) = 0

ρ0
∂vs

∂t
+ ∇ps = ∇ · ( ¯̄τs) − ρ0∇ · v′ ⊗ v′

(2)

in which third order correlations of fluctuating quantities
as well as the compressibility term ρ′v′ are also neglected,
being one or two orders of magnitude smaller than the
second order correlations of fluctuating quantities.

The amplitude value of both components of acoustic
velocity are represented over the entire domain (z, r) ∈
[0, L] × [0,R] in Figures 1 and 2, at very low streaming
flow regime (zp = 0.1 µm). As expected, in the core of the
chanel the axial acoustic velocity v′z has a spatial distribution
constant with respect to r (see Figure 3) and sinusoidal with
respect to z. The radial acoustic velocity v′r has a linear
variation with respect to r in the core of the chanel (see
Figure 4) and its order of magnitude is in the ratio πδν/L
with the axial acoustic velocity v′z. In the core of the chanel,
the associated correlations v′zv′z and v′rv′z have a similar
behaviour : v′rv′z is antisymmetric with respect to the r = 0
line and has an order of magnitude in the same ratio πδν/L
with the correlation v′zv′z, whose variation is constant in r and
sinusoidal in z.

Figure 1 – Isolines of the axial acoustic velocity v′z
amplitude colored by its value obtained with the DNS

simulation, zp = 0.1 µm.

Figure 2 – Isolines of the radial acoustic velocity v′r
amplitude colored by its value obtained with the DNS

simulation, zp = 0.1 µm.

All results presented below are obtained using a regular
mesh of rectangular cells composed of 500 points in the axial
direction, and of 5 × R/δν points in the radial direction. The
time step δt is fixed equal to 8 10−9 s.

3 Results
Simulations with the DNS code are performed for large

tubes (R/δν = 50, L = 8.59 mm, R/L = 0.092) and different
forcing amplitudes (zp = 0.1, 10 and 30 µm), corresponding
to configurations ranging from the first streaming regime
(zp = 0.1 µm) to the second streaming regime (zp = 10 and
30 µm). The streaming flow regimes are related to the way
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Figure 3 – Radial variation of the axial acoustic velocity
amplitude at different axial positions, zp = 0.1 µm. Solid

lines: linear fit in the core region.
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Figure 4 – Radial variation of the radial acoustic velocity
amplitude at different axial positions, zp = 0.1 µm. Solid

lines: linear fit in the core region.

the axial streaming velocity amplitude varies as a function
of the axial acoustic velocity amplitude on the axis r = 0:
in the first regime the variation is parabolic, as in the case
of slow streaming, while in the second regime the variation
becomes linear [8]. The acoustic Mach numbers vary from
M = 0.001 to M = 0.18.

In the linearised equations system (Eq.2) the source term
is the sum of four terms: ∂

∂z (v′zv′z),
∂
∂z v′rv′z,

1
r
∂
∂r (rv′rv′z) and

1
r
∂
∂r (rv′rv′r). These terms are taken as source terms associated

to the correlations v′zv′z, v′rv′z and v′rv′r.
In order to analyse the effect of each source term

separately, numerical solutions of the linearised equations
(Eq.2) are computed considering only one source term at a
time.

3.1 Slow streaming flow
We begin by showing simulations performed with a

forcing amplitude of zp = 0.1 µm which corresponds to a
slow streaming flow (Regime 1 [8]).

Figure 5 displays isolines of the axial streaming velocity
colored by its value and streamlines of the streaming flow
obtained when the source term considered is ∂

∂z (v′zv′z). This
source terme is named the axial source term. Figure 6
shows the radial variation of the axial streaming velocity
at different axial locations, also obtained with the axial
source term. In the core region the variation is parabolic (as
confirmed by a polynomial fit), while within the near-wall
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Figure 5 – Isolines of the axial streaming velocity colored
by its value and streamlines of the streaming flow obtained

in the case of the axial source term ∂
∂z (v′zv′z), zp = 0.1µm.
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Figure 6 – Radial variation of the axial streaming velocity
obtained with the axial source term at different axial

locations, zp = 0.1µm. Solid lines: polynomial fit in the core
region.

region the variation changes: the axial streaming velocity
increases, changes sign and then decreases and goes to zero
on the solid wall (Fig.6). The change of sign in the axial
streaming velocity profile corresponds to the presence of
a streaming cell in the near-wall region that is called the
inner streaming cell. The order of magnitude of the axial
streaming velocity maximum value on the r = 0 axis and of
its minimum value inside the boundary layer are the same.
This behaviour can be easily understood by considering the
following approximate equation:

µ
1
r
∂

∂r
(r
∂U1s

∂r
) =

∂p1s

∂z
+ ρ0

∂

∂z
(v′zv′z) , (3)

whose solution is analytical and describes the axial streaming
velocity in cylindrical coordinates, for a large resonator,
outside the boundary layer. Both the axial source term and
the ∂p1s

∂z term being independent of the radial coordinate
outside the boundary layer, the solution U1s of Eq.3 is
parabolic with respect to r and matches the streaming
boundary layer solution.

Figure 7 displays isolines of the axial streaming velocity
colored by its value and streamlines of the streaming flow
obtained when the source term considered is 1

r
∂
∂r (rv′rv′z).

This source term is named the radial source term. The
radial source term induces a streaming field of the same
order of magnitude as the streaming field generated with
the axial source term (see color code in Figures 5 and 7).
Figure 8 shows the radial variation of the axial streaming
velocity generated with the radial source term at different
axial positions. The variation is parabolic in the core (as
confirmed by a polynomial fit) and of the same order of
magnitude as for the streaming generated with the axial
source term. However the sign of the axial streaming
velocity does not change inside the boundary layer therefore

Figure 7 – Isolines of the axial streaming velocity colored
by its value and streamlines of the streaming flow obtained
in the case of the radial source term 1

r
∂
∂r (rv′rv′z), zp = 0.1µm.
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Figure 8 – Radial variation of the axial streaming velocity
obtained with the radial source term at different axial

locations, zp = 0.1µm. Solid lines: polynomial fit in the core
region.

no streaming cell is generated in the boundary layer
(compare Fig.6 and Fig. 8)). In order to understand this
behaviour, we consider again an approximate equation in
cylindrical coordinates, for a large resonator, outside the
boundary layer:

µ
1
r
∂

∂r
(r
∂U2s

∂r
) =

∂p2s

∂z
+ ρ0

1
r
∂

∂r
(rv′rv′z) . (4)

The solution U2s of Eq.4 is analytical. The correlation
term v′rv′z, like the radial acoustic velocity amplitude (see
Fig. 3), varies linearly with the radial coordinate outside
the boundary layer. The pressure term ∂p2

∂z is constant with
respect to r. The resulting analytical solution U2s therefore
has a parabolic profile in the radial direction.

The source term ∂
∂z v′rv′z produces a streaming flow

smaller in order of magnitude than U1s and U2s, rotating
in the opposite direction. The streaming flow obtained
considering the source term 1

r
∂
∂r (rv′rv′r) is much smaller than

all the other ones.
Finally, the axial source term is the only term responsible

for creating the inner streaming cells.

3.2 Fast streaming flow
We carry on the same procedure for a higher intensity

wave created with a forcing amplitude of zp = 10 µm.
The streaming flow associated with such a wave can be
placed in the second regime of streaming [8] with no extra
cell generated. Figure 9 represents isolines of the axial
streaming velocity colored by its value and streamlines of
the streaming flow generated by the contribution of both the
axial ∂

∂z (v′zv′z) and ∂
∂z (v′rv′z) source terms. Figure 10 displays

isolines of the axial streaming velocity colored by its value

CFA 2016 / VISHNO11-15 avril 2016, Le Mans

932



Figure 9 – Isolines of the axial streaming velocity colored
by its value and streamlines of the streaming flow obtained

with both the source terms ∂
∂z (v′zv′z) and ∂

∂z (v′rv′z), zp = 10 µm.

Figure 10 – Isolines of the axial streaming velocity colored
by its value and streamlines of the streaming flow obtained

in the case of the radial source term , zp = 10 µm.

and streamlines of the streaming flow generated by the radial
source term alone.

In Figure 9 the streaming field is mainly due to the axial
source term and no deformation can be observed on either
inner or outer streaming flow patterns. On the contrary,
the streaming flow due to the radial source term is strongly
distorted : a new streaming cell appears on the axis of
resonator, near the place of acoustic velocity anti-node (see
Figure 10). When adding those two streaming fields in
order to obtain the complete streaming flow field (neglecting
the influence of the 1

r
∂
∂r (rv′rv′r) source term), the order of

magnitude of the axial streaming velocity in the core is
smaller than the axial streaming velocity in the near-wall
region. Moreover, the resulting streaming flow pattern does
not exhibit a counter-rotating cell in the core.
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Figure 11 – Radial variation of the radial acoustic velocity
obtained from the full DNS calculation at different axial

locations, zp = 10 µm. Solid lines: polynomial fit in the core
region.

Figure 11 shows the radial variation of the radial acoustic
velocity v′r at different axial positions obtained from the full
DNS calculation. The profile is no longer linear in r, as
it is in Regime 1, but is polynomial of 3rd order, as found
by a polynomial fit in the core region. The corresponding
streaming axial velocity profile in the radial direction is
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Figure 12 – Radial variation of the axial streaming velocity
obtained with all the source terms at different axial

locations, zp = 10 µm. Solid lines: polynomial fit in the core
region.
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Figure 13 – Red line: axial variation of the axial streaming
velocity at r = 0 obtained with all the source terms,

zp = 10 µm. Dotted line: Rayleigh sinusoidal solution.

no longer parabolic in the center of the resonator but is
polynomial of 3rd order as obtained by a polynomial fit in
the core region (Figure 12).

Figure 13 shows the axial variation of the axial streaming
velocity at r = 0 generated with all source terms. The
obtained streaming profile is distorted compared to the
sinusoidal Rayleigh solution. However no new cell emerges
yet since the profile only changes sign at z = 0, i.e. at the
place of transition between the two outer cells (Fig. 13).
This is probably because the deformation due to the radial
source term is not strong enough.

Finally, the radial source term appears to play a major
role in the outer streaming pattern distortion in Regime 2.
The radial acoustic velocity has a strong influence on this
source term. In the next section, focus will be on the radial
components and the possible interaction between acoustic
and streaming flows.

3.3 Further discussion on fast streaming flow
In order to assess the interaction between acoustic and

streaming flows, a DNS calculation is conducted where at
the end of each period, the averaged flow over the preceding
period is removed from the total velocity field. By doing
so, we intend to artificially remove the influence of the
streaming flow on the acoustic field. The resulting flow field
gives an ”acoustic” field separated from the streaming flow.
Figure 14 shows the radial variation of the resulting radial
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acoustic velocity component for the case discussed in the
previous section (zp = 10 µm). In the core region, the profile
is linear just like it is for Regime 1 whereas the acoustic
field extracted from the full DNS calculation has a radial
component with a 3rd polynomial variation in the radial
direction (Fig. 11).

This observation shows that streaming flow influences the
acoustic field through the radial component.
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Figure 14 – Radial variation of the radial acoustic velocity
at different axial locations when removing the influence of
the streaming flow on the acoustic flow, zp = 10 µm. Solid

lines: linear fit in the core region.
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Figure 15 – Radial variation of the radial acoustic velocity
obtained from the full DNS calculation at different axial

locations, zp = 30 µm. Solid lines: polynomial fit in the core
region.

The forcing amplitude is now increased to zp = 30 µm,
which corresponds to a case in Regime 2 with an extra
counter-rotating cell. Figure 15 displays the radial variation
of the radial acoustic velocity obtained from the full DNS
calculation at different axial locations. The profiles in the
core are very distorted and correctly fitted by a polynomial
of 6th order. Figure 16 shows the radial variation of the
corresponding axial streaming velocity. The profiles in the
core are correctly fitted by a polynomial of 5th order. On
one of the profiles we can see negative values of the axial
streaming velocity in the core, assessing the presence of the
extra counter-rotating outer streaming cell.

Next we conduct again a DNS calculation where at the
end of each period, the averaged flow over the preceding
period is removed from the total velocity field. Figure 17
shows the radial variation of the corresponding radial
acoustic velocity at different axial locations. The profiles
are correctly fitted by a linear fit. Figure 18 shows the radial
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Figure 16 – Radial variation of the axial streaming velocity
obtained from the full DNS calculation at different axial

locations, zp = 30 µm. Solid lines: polynomial fit in the core
region.
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Figure 17 – Radial variation of the radial acoustic velocity
at different axial locations when removing the influence of
the streaming flow on the acoustic flow, zp = 30 µm. Solid

lines: linear fit in the core region.
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Figure 18 – Radial variation of the axial streaming velocity
induced by the acoustic flow shown in Fig.17, zp = 30 µm.

Solid lines: polynomial fit in the core region.

variation of the axial streaming velocity induced by the
acoustic flow shown in Figure 17 calculated using the AMS
code. The profiles are parabolic as shown by a polynomial
fit and no extra cell is observed since the velocities are all
positive in the core. The associated streaming pattern has
a similar structure as a Regime 1 streaming flow pattern
although created by a high intensity acoustic wave. This
shows the major role played by the coupling between the
streaming flow and the acoustic field. This coupling works
as a two-way interaction through the radial components.
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Figure 19 – Maximum radial streaming velocity (dotted
lines) and radial acoustic velocity (solid lines) versus Uac.

Let us now explore the relative amplitude of the radial
acoustic and streaming velocity components. Figure 19
shows the maximum absolute value of radial streaming
velocity (dotted lines) and radial acoustic velocity (solid
lines) as functions of the axial acoustic velocity Uac for
several values of R/δν = 20, 40 and 50. One can observe
that the radial acoustic velocity dependence on Uac is linear
and is independent of R/δν. The radial streaming velocity
dependence is quadratic in Uac. The amplitude of the
radial streaming velocity increases with R/δν. After the
intersection of the two sets of curves the radial streaming
velocity becomes significantly greater than the radial
acoustic velocity for high values of R/δν. On the other hand
for the value R/δν = 20, the radial streaming velocity is
always smaller than the radial acoustic velocity for Uac in
the range [0 − 60] m/s. This is consistent with the transition
from the first to the second regime of streaming as described
in [8].

4 Conclusion
The influence of the radial component of the acoustic

velocity on the streaming flow, as the streaming flow evolves
from the first regime to the second regime was studied
numerically. It was shown that the radial source term is
responsible for the change of streaming behaviour. The
radial acoustic velocity has a strong influence on this source
term. Both the acoustic velocity and the radial source term
were shown to be strongly modified in the second regime.
The analysis of the variation of the radial acoustic and
streaming velocities with respect to the acoustic amplitude
Uac shows that the radial streaming velocity component
becomes greater than the radial acoustic velocity component
in the second regime. The memory of the streaming flow
influence on the acoustic field was artificially removed
showing that the associated streaming pattern has a similar
structure as a Regime 1 streaming flow pattern although
created by a high intensity acoustic wave. This demonstrates
that in Regime 2, the streaming flow distortion is mainly
due to non linear interaction between acoustic and streaming
flows through their radial components.
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