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Acoustical properties of heterogeneous and saturated rigid porous media with high permeability contrast is

studied. At the mesoscopic scale, the movement of fluid is described by using the generalized Darcy’s law.

A two-scale homogenization method is employed to obtain the wave propagation equations at the macroscopic

scale. By introducing a scale separation for high contrast permeability, a new quantity representing the dynamic

compressibilty is appeared in the macroscopic wave equations. The variational equations of local problems are

presented for determining effective acoustic properties at the macroscale. The proposed method is validated

by considering a problem of plane harmonic wave propagation in a halfspace. Solutions obtained by using the

proposed homogenization methodare compred with the finite element solutions computed by using a model with

real mesoscopic geometry. The validity domain of high permeability contrast model is also discussed.

1 Introduction
Many natural/artificial porous materials exhibit

the presence of heterogeneity at scales much larger

than microstructure scales, but much smaller than the

wavelengths. In a such porous medium with heterogeneity

at the meso-scale, pore fluids in regions of dissimilar

properties respond differently with changes in their fluid

pressures. It significantly affects the velocity dispersion

and attenuation, referred to as mesoscopic losses due to

wave-induced flows [10]. Basically, continuum porous

model with spatially varying coefficients may be used

for simulating the wave propagation in a heterogeneous

porous media. However, the simulation may be very costly,

especially when the domain of interest is much larger

than the heterogeneity’s size. For media with periodically

distributed inhomogeneities, macroscopic effective media

can be derived from the continuum equations established at

mesoscale. Effective material parameters have been derived

by using volume-averaging technique for acoustic problem

of porous media which consist of two linear isotropic porous

constituents [1] and Pride and Berryman [8, 9]. However,

situations of very high heterogeneity of permeability have

not been addressed in previous works.

This note reports the essential procedure for determining

the dispersion of acoustic waves at the macroscopic scale

of high permeability contrast (HPC) porous media. More

details can be found in [5].

2 Model and equations

2.1 Acoustic equations in rigid porous media
Let us consider a periodic rigid-skeleton porous medium

occupying a domain Ω under time-harmonic excitation

(the time dependence eiωt, where ω = 2π f is the angular

frequency, f is the frequency, and i =
√−1). The porous

medium with porosity φ0 is saturated by a compressible

and viscous fluid of density ρ f and dynamic viscosity η.
Following [2], the governing equations of wave propagation

problem in Ω is given by:

∇x · w + iω

μ
p = 0 in Ω, (1)

η [k(ω)]−1 w + ∇x p = 0, in Ω, (2)

where w(x, ω) and p(x, ω) are respectively the fluid’s

effective velocity and the interstitial fluid pressure; μ is the

Biot modulus: μ = φ−1
0 k f with k f the fluid’s bulk modulus

of the fluid; k(ω) is the dynamic permeability tensor

which contains the inertial drag and viscous effects due to

the movement of interstitial fluid [6]. For an orthotropic

medium, and the complex-valued second-order tensor k(ω)

is diagonal and may be expressed by: k = diag(ki) for

i = 1, ..., 3. For this study, we use Johnson-Koplik-Dashen

(JKD) model [4] for which the component i of the diagonal

tensor η [k(ω)]−1 may be expressed by:

η

ki
= iω

ρ f a∞i
φ0

+
ηFcorr

i (ω)

k0i
, (3)

where a∞i and k0i are respectively the tortuosity and the

intrinsic permeability in the direction i; Fcorr
i is a correction

factor [4]:

Fcorr
i (ω) =

√
1 +

4i(a∞i )2k2
0iρ

fω

ηΛ2
i φ

2
0

, (4)

where Λi is a geometrical parameter for which 2/Λi is the

ratio between the surface and the volume of the pores. Noting

that Fcorr
i (ω) is complex, one may separate the viscous term

from the inertia term in Eq. (2) by rewriting η/ki (see Eq. (3))

in terms of real parameters ρi and Ki introduced by ωρi =

� (η/ki) and η/Ki = � (η/ki), so that:

η[k(ω)]−1 = [κ(ω)]−1 =
(
iωρ + [K]−1

)
. (5)

where ρ and K are diagonal real-valued tensors.

2.2 Periodic porous medium with high
permeability contrast (HPC)

We assume that the porous medium in consider has a

periodic and high-contrast permeability. A dimensionless

scale parameter ε is introduced presenting the ratio between

the characteristic size of the heterogeneity at the mesoscopic

scale (characteristic length �) and the wavelength which is

comparable with a macroscopic size L, thus, ε = �/L. For a

given ε, we may introduce the following split: Ω = Ωεm ∪Ωεc
where Ωεm is the subdomain with a low-permeability and Ωεc
is the subdomain with a high-permeability (Ωεm ∩ Ωεc = ∅)
(see Fig. 1). Since we consider a periodic media, all material

parameters are assumed to be periodic with respect to the

spatial position.

In each REV, the material parameters are assumed to take

the form (see Rohan et al. [12]):

ρ(y) = χc(y)ρc + χm(y)ρm,

μ(y) = χc(y)μc + χm(y)μm,

[K(y)]−1 = χc(y)�
(
[Kc]−1

)
+ ε−2χm(y)[K̂m]−1,

(6)

where χc(y) = 1, χm(y) = 0 for y ∈ Yc, and χc(y) = 0,

χm(y) = 1 for y ∈ Ym.

The convergence results, as obtained rigorously in [11]

using the periodic unfolding method of homogenization,
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Figure 1: Description d’un milieu poreux périodique avec

un contraste élevé de perméabilité

yield the two-scale asymptotic expansions in ε of pε(x, ω)

and wε(x, ω) which take the following form:

pε(x) = p0(x) + εχc(y)P1(x, y) + χm(y)p̂(x, y),

wε(x) = χc(y)W(x, y) + εχm(y)ŵ(x, y),
(7)

where P1, p̂,W and ŵ are Y-periodic functions. These

truncated expansions reveal completely different asymptotic

behaviour of the pressure and velocity fields in Yc and Ym.

2.3 Homogenized HPC model
2.3.1 Local problem at mesoscopic scale

Local problems in Yc and Ym govern the characteristic

responses (see [11] for details). We shall use the space P(Yd)

formed by sufficiently differentiable Y-periodic functions

restricted to Yd, d = m, c.

Local problem in Yc Functions P1 and W involved in (7)

are expressed by the following relations [11]:

P1 = iω πk(∂x
k p0 − fk), W = iω ψk(∂x

k p0 − fk), (8)

where πk and ψk are the characteristic Y-periodic responses

for a fixed frequency ω.

The characteristic response πk(k = 1, ..., 3) is a Y-periodic

function defined in subdomain Yc; for a given ω, function πk

satisfies the following equations:

∇y ·
{
κc∇y

(
πk +

1

iω
yk

)}
= 0, ∀y ∈ Yc, (9)

n · κc∇y

(
πk +

1

iω
yk

)
= 0, ∀y ∈ ∂Yc\∂Y, (10)

where κc(ω) =
(
iωρc + [Kc]−1

)−1
; ∇y and ∇y· denote

the gradient and divergence operators with respect to y,

respectively. The flux vector ψk may be calculated in terms

of πk:

ψk = −κc(ω)∇y

(
πk +

1

iω
yk

)
. (11)

The problem (9)-(10) can be solved using the weak

formulation: Find πk ∈ P(Yc), such that:∫
Yc

∇y(δπ) · κc∇y

(
πk +

1

iω
yk

)
dVy = 0, (12)

for ∀δπ ∈ P(Yc).

Local problem in Ym Functions p̂ and ŵ are expressed by

the following relations (see Rohan [11]):

p̂ = −ω2π̂p0 , ŵ = −ω2χ̂p0 , (13)

where π̂ and χ̂ are the characteristic Y-periodic responses for

ω fixed. Let us note that p̂(x, y) = 0 in Yc and have zero trace

on the interface Ym ∩ Yc. The characteristic response π̂ is a

Y-periodic scalar function defined in the subdomain Ym; for a

given ω, π̂ satisfies the following boundary-valued problem:

−∇y ·
(
K̂m∇yπ̂

)
+

iω

μm
π̂ = − 1

iωμm
, ∀y ∈ Ym , (14)

π̂ = 0, ∀y ∈ ∂Ym \ ∂Y . (15)

The vector function χ̂ is given by:

χ̂ = K̂m∇yπ̂. (16)

The variational equations of the problem (14)-(15) read:

Find a Y-periodic π̂ ∈ P0(Ym) such that:∫
Ym

∇y(δπ̂) · K̂m∇yπ̂ dVy +

∫
Ym

δπ̂
iω

μm
π̂ dVy

= −
∫

Ym

1

iωμm
δπ̂ dVy ,

(17)

for ∀δπ̂ ∈ P0(Ym), where P0(Ym) = {q ∈ P(Ym)| q =
0 on ∂Ym \ ∂Y}.

It is worth noting that the local problem in Ym can be

formulated equivalently in the real-sized cell εY , i.e. solved

in εYm for the natural permeability Km = ε
2K̂m, whereby the

gradients are ∇x = ε
−1∇y.

2.3.2 Global macroscopic problem in Ω

The acoustic wave propagation in the homogenized HPC

medium obeys the following equation:

iω∇ ·KH∇pH + ω2(Q − ω2N)pH = 0, (18)

where pH is the local amplitude of the time-harmonic wave

for the HPC model. In this model, the quantities Q and N
designate respectively the effective static compressibility

and the effective dynamic compressibility; the second-order

tensor KH represents the effective dynamic permeability

divided by fluid viscosity. These three effective material

parameters depend on the characteristic mesoscopic

responses πk and π̂:

KH
kl = −ω2

∫
Yc

κc∇y

(
πk +

1

iω
yk

)
· ∇y

(
πl +

1

iω
yl

)
dVy. (19)

Q =
∫

Y

1

μ
dVy, (20)

N = −
∫

Ym

(
iωK̂m∇yπ̂ · ∇yπ̂ − ω2 1

μm
π̂π̂

)
dVy . (21)

One may notice that the form of macroscopic model (18) is

analogous with the one obtained in [7] and [3] which has

been developed for the case in which Yc is not a porous

medium but a fluid.
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3 Numerical results
To illustrate the proposed method, the plane wave

problem in a 2D periodic porous halfspace. Fig. 2 shows

the domain Y of the REV at the mesoscale represented by

the rectangle L1 × L2. At the mesoscale, Ωc consists of

orthogonal connected channels. The widths of channels

in two orthogonal directions are denoted by h1 and h2,

respectively. We introduce a parameter φc
0
= |Yc| / |Y | which

represents the volume fraction of Ωc over Ω.

e2

e1
θ

p = P0e
iωt

O ∞

∞

−∞

y1

ε
O

y2

ε

e′1

e′2

e′1

e′2

L1

L
2

Ym

h1

h
2

Ym Ym

Ym

Yc

Figure 2: Halfspace with orthogonal Yc channel REV.

For the simulation presented here, L1 = L2 = 0.01 m,

h1 = 0.4L1 and h2 = 0.25L2. Both Ωc and Ωm are

occupied by isotropic materials with the permeabilities

κm
0
= 10−12 m2/(Pa.s) and κc

0
= 10−6 m2/(Pa.s), respectively.

The bulk modulus and the dynamic viscosity of the fluid are

given by k f = 2.25 GPa and η = 10−3 Pa.s−1, respectively.

Since the geometry is nonsymmetric (i.e. h1 � h2) at

the mesoscale, the homogenized material is anisotropic

at the macroscale. A time-harmonic pressure (with a

constant amplitude P0 and angular frequency ω) is applied

at the surface x1 = 0 to generate a plane wave in the e1

direction. The angle of incidence θ = ̂(e′
1
, e1) defines the

orientation of REV with respect to the wave propagation

direction (see Fig. 2). In particular, we have chosen angle

θ = arctan(1/2), recalling its definition above. This specific

choice is convenient to obtained a structure that have

periodic boundary condition. The finite element element

solution of the pressure field p is depicted in Fig. 3. One may

note that the structural period with respect to the imposed

wave direction (e1) is now 2L1/ cos θ ∼ 0.022 m.

Fig. 4 presents the validations for the solutions of

the problem presented in Fig. 3 for the homogenized

HPC model (the macroscopic response with and without

correction terms) along two lines (C1): x2 = 0 m (top) and

(C2): x2 = 8 × 10−3 m (bottom) (Fig. 3). It shows that

the HPC model provides a bery good approximation of the

(C1)

(C2)

(C3)

Figure 3: Finite element solution of pressure field Re(p) in

Pa (ω = 2.5 × 104 rad/s, tan θ = 0.5).

waveform at the macroscopic scale. Moreover, By using

the correction pcorr
H , one may capture precisely the local

responses at the mesoscale.
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Figure 4: Comparison between the solutions of the HPC

model and the reference FE solutions (tan θ = 0): pressure

distributed along horizontal lines (C1): x2 = 0 (top) and

(C2): x2 = 0.008 m (bottom) (see Fig. 3).

The macroscopic phase velocity and attenuation in a

half-space with (with θ = 0) is studied in Fig. 5. For

comparison purposes, solutions obtained by using a model

with low permeability contrast (LPC) is also presented.

While for homogenized model the wave dispersion may

be derived analytically, for the heterogeneous structure, it

is computed numerically by using the FE solutions. One

may notice that the macroscopic phase velocity and the
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attenuation can be computed with a sufficient accuracy

using one of the two homogenized models, i.e each of

LPC and HPC models has its range of applicability. The

expected critical contrast value, from which the HPC model

would need to be employed in order to take into account

the permeability scaling, may be given by the condition

ω2N/Q = K̄n/KL
n (more detail of this condition may be

found in [5]). Hence, one suggest that for a given contrast

level of permeability, one need to choose appropriate model

for predicting the phase velocity and attenuation of the

equivalent medium.
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Figure 5: Phase velocities and attenuations computed using

using homogenized and original models

(θ = 0, ω = 2.5 × 104 rad/s).

4 Conclusion
Acoustic behaviors of a strongly heterogeneous porous

medium can efficiently be predicted using the proposed

two-scale homogenized HPC model [5, 11]. The scale

separation of the permeability at the meso-scale lead to a

new quantity (dynamic compressibility) in the macroscopic

wave equation. The proposed procedure is useful for

investigate the dynamic behavior of porous media with

complex geometry of phases in REV at the mesoscale. The

numerical results have shown that the local response at

the mesoscopic level may be captured very well by using

the homogenized model. An ongoing work is realized for

studying dynamic behaviors of periodic poroelastic media

with high contrasts on permeability/elasticity.
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