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The goal of this research is to apply the idea of energy pumping in vibroacoustics. Using a nonlinear dynamic
absorber we want to control the low amplitude vibrations and the acoustic field emitted by a thin plate under
acoustic excitation. We introduce a bi-stable nonlinear absorber. Its nonlinearity, that results in softening at low
amplitudes of vibrations, allows to decrease considerably the threshold for the energy pumping. At higher level of
excitation, we observe a chaotic regime in the absorber dynamics which leads to an unusual category of energy
pumping. To illustrate the efficiency of the absorber we show the results of a recent experiment. To get access to
the governing nonlinearity we develop a model of the bi-stable absorber. The obtained theoretical description of
the absorber is in good agreement with our observations.

1 Introduction
Following the fundamental work of Gendelman et al

[1, 2] on the energy pumping, the use of nonlinear systems
as absorbers got a lot of interest from both scientific and
industrial communities. The general name that was given
to this type of absorbers is ”Nonlinear Energy Sink” or
simply ”NES”. The most simple NES involves a cubic
nonlinearity that leads to an amplitude dependent resonance
frequency. When the NES is coupled to a linear system, this
dependence allows a resonance capture : at some amplitude
of vibrations the NES resonance frequency becomes close to
the one of the linear system and an energy transfer from the
linear system to the NES occurs. The injected energy rises
the amplitude of the NES vibrations and the corresponding
frequency change breaks the resonance coupling. Thus the
energy dissipates in the NES and can not be transferred
back.

Beside this basic example, a variety of NESs with
different types of nonlinearities was proposed, for example,
NESs with quadratic and cubic nonlinearities in acoustic
systems [3] or cubic NESs in mechanics [4].

The very recent numerical and theoretical work of
Romeo et al [5] have shown that a bi-stable configuration,
that possesses both quadratic and cubic nonlinearity, is able
to solve the main limitation of the NESs - a high triggering
threshold for energy pumping.

This paper presents the results of our work on a passive
vibration control with a bistable NES developed by our
group. We will start with the NES description and the
presentation of the latest experimental results in the case
of vibrations of an aluminum plate controlled by two
NESs. In section 3 we propose a simple analytic model
of a generalized linear system and of its coupling to the
NESs. The linear vibration modes calculated for the NES
(vibrations around the equilibrium position) are used
to create a complete Galerkin discretization numerical
model of the NES. Both the linear characteristics of the
NES and the nonlinear ones are measured during a set of
experiments presented in section 4. In the last section we
briefly summarize the results.

2 Experimental setup
The NES we are working on is represented by the

well-known bi-stable system - a buckled beam with fixed
edges. The main modification that we introduce is to fix a
significant mass on the buckled beam. Since the added mass
is considerably bigger than the total mass of the beam, its
dynamics is changed drastically when comparing with a
case of a uniform beam. The detailed NES configuration
is described in Figure.1. The initial configuration of the

bistable NES composed of a light steel blade with a mass
placed at the center : length of the beam l = 10 cm, thickness
0.13 mm, height 5 mm, midspan deflection b̂ = 2.35 mm,
the additional mass weights m0 = 2.6 g. The mass of the
support that is clamping the beam edges is ms = 30 g.

(a) NES scheme (b) NES mounted on a plate

Figure 1 – The initial configuration of the bistable NES.

The experimental setup used to probe the NES efficiency
is shown in Figure 2. An aluminum plate clamped from
below and free from the other three sides was used as a
linear system. The plate parameters were : thickness of
0.3 cm, width of 42 cm, height of 54.7 cm, total mass
of 2070 g. A loudspeaker excited the plate vibrations.
Two NESs were attached to the upper edges of the plate.
The whole setup was mounted in an acoustically treated
room. To avoid measuring the acoustic field reflected by
the plate, the reference pressure was measured behind the
loudspeaker close to its membrane. Two displacement laser
sensors measured the displacements of the NESs centers, a
velocimeter and an another displacement sensor traced the
dynamics of one of the upper edges, a microphone measured
the reference sound pressure created by the loudspeaker.

Figure 2 – The experimental installation.

The observed plate’s linear vibration modes were in good
correspondence with the ones predicted theoretically. The
system behavior was explored around plate resonances of
43 Hz and 73 Hz which correspond to the plate’s third and
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fourth modes respectively. These modes have maximums at
the NES attachment positions (see Figure 3).

Figure 3 – The shapes of the third (left) and the fourth
(right) modes of the plate. The solid black line identifies the

clamped edge. The black dots indicate one of the NES
attachment positions.

The loudspeaker provided a monochromatic excitation
with a constant amplitude. Changing step by step the
frequency and the amplitude we excited the system from
the rest position and recorded first 21 seconds of signals.
Eliminating the transients, we used the RMS of the plate’s
velocity to characterize its forced vibrations. In order to have
the independent comportment of the NESs we performed
measurements in different configurations via blocking and
unblocking the NESs. The vibration response of the plate
was characterized by a ”response over signal” function
RoS = 20 log(VRMS /S PLRMS ), where VRMS and S PLRMS

are, respectively, the root mean square of the plate velocity
and the root mean square of the excitation sound pressure
level recorded during 10 seconds of forced plate vibrations.
Figure 4 shows the ridge surface of this function in case of
excitation around the fourth mode of the plate.

Figure 4 – Ridge surface for the plate response with both
NESs unblocked as a function of the excitation frequency

and the S PLRMS .

Figure 5 illustrates the ridge curves for a case of one
and two active NESs. We see that at high excitation levels
we have an attenuation effect of up to 7 dB. This region
corresponds to a regime in which NESs’ motion becomes
chaotic (see [7]). We also notice that the attenuation effect
of NESs is cumulative.

Figure 5 – The ridge curves for the fourth mode ridge
surfaces. Curves : blue - both NESs are active, yellow - only

one NES is active.

For the third mode the results are similar to the ones
for the fourth mode. The sound pressure level threshold
stays the same being around 105 − 110 dB, but the observed
attenuation was considerably lower, staying around 2 dB.
The lower attenuation is explained by the fact that, contrary
to the fourth mode, the third mode is strongly coupled with
the fluid. This way the NES damping effect will be relatively
smaller when compared with the internal damping of the
plate’s vibration mode.

We should point out that, even though, the two NESs
had very similar geometry, their observed linear vibration
frequencies differed a lot being from 25 Hz up to 40 Hz,
depending on the NES and its equilibrium position. This
sensitivity of the NES properties to small changes of its
geometry indicates that the one mode approximation,
analyzed in [5], would give only a good qualitative
illustration for the interaction between the plate and the
NES, but it is not able to describe NES fine dynamics, such
as the linear resonance frequencies or the triggering level.
In the next section we propose a more refined model that
can explain the apparent sensitivity and gives a quantitative
description of the NES.

3 Modeling

3.1 General analytic description
It is easy to see that the difficulty for modeling the system

”NES+plate” lays in the NES itself, while the linear system
and its coupling are straightforward. Proceeding with a mode
projection for the linear system in case of one NES we would
formally obtain the following Lagrangian :

L =

Nl∑
i=1

Mi

2

(∂yi(t̂)
∂t̂

)2
−

Nl∑
i=1

kiy2
i (t̂)
2

(1)

+
1
2

∫ l

0
m(x̂)

 Nl∑
i=1

∂yi(t̂)
∂t̂

+
∂Φ(x̂, t̂)
∂t̂


2

dx̂ − U(Φ(x̂, t̂)).

Here yi, Mi, ki are the coordinate, mass and stiffness of
the linear system mode number i. The projection was done
such that yi correspond to the mode displacements at the
attachment point of the NES support. Φ(x̂, t̂) represents the
transverse beam displacement as a function of coordinate
along the beam x̂ and time t̂.

To get the part of Lagrangian that describes the NES
we suppose that the mass is point-like and the beam is
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uniform : this allows us to use the equation for a clamped-
clamped buckled beam as a base of our model. We also
suppose that the boundary conditions are ideal. Under these
approximations we can write the equation for a transverse
planar vibrations of our NES [7] :

(m + M̂δ(x̂−x̂0))
∂2ŵ
∂t̂2 + EI

∂4ŵ
∂x̂4 + P

∂2ŵ
∂x̂2 + ĉ

∂ŵ
∂t̂

(2)

=
EA
2l

∂2ŵ
∂x̂2

∫ l

0

(
∂ŵ
∂x̂

)2

dx̂ + F̂(x̂, t̂),

with the boundary conditions

ŵ = 0 and
∂ŵ
∂x̂

= 0 at x̂ = 0 and x̂ = l. (3)

Here m is the mass per unit length, ŵ(x̂, t̂) is the transverse
displacement at position x̂ at time t̂, E is the Young’s
modulus, A and I are the area and the moment of inertia
of the cross section, respectively, l is the length of the
non-deformed beam, P̂ is the axial load, ĉ is the viscous
damping coefficient, F̂(x̂, t̂) is the external force. M̂ is the
added mass and x̂0 is the point of its attachment. Beside
the presence of the δ-part, it is the equation for a buckled
clamped-clamped ideal beam (see [6]).

To simplify the expressions we will follow [6] using non-
dimensional variables :

x =
x̂
l
, x0 =

x̂0

l
, w =

ŵ
r
, t = t̂

√
EI
ml4

, (4)

Ω = Ω̂

√
ml4

EI
, M =

M̂
ml
,

where r =
√

I/A is the gyration radius of the beam cross
section. Thus the Eqs.(2) and (3) will take form of a system

(1 + Mδ(x − x0))ẅ+wiv + Pw′′ (5)

−
1
2

w′′
∫ 1

0
w′2dx = −cẇ + F(x, t),

with w = 0 and w′ = 0 at x = 0 and x = 1 and new non-
dimensional quantities

P =
P̂l2

EI
, c =

ĉl2
√

mEI
, F =

F̂l4

rEI
.

Here the dot indicates the derivative with respect to time,
while the prime indicates a derivative with respect to
coordinate x.

Now it is easy to define the shape of the static
deformation, since in our approximation there is no effect of
presence of the added mass. Dropping the dynamical terms
we get well known equation for a uniform buckled beam :

wiv + Pw′′ −
1
2

w′′
∫ 1

0
w′2dx = 0. (6)

The solutions of this problem are

ws1 (x) = 0, (7)

ws2 (x) =
b
2

(1 − cos 2πnx) , where (n ∈ {1, 2, 3, 4, ...}), (8)

ws3 (x) = a
(
sin kx −

k
2

cos kx − kx +
k
2

)
, (9)

where tan k/2 = k/2.
Here ws1 (x) is a trivial solution, while ws2 (x) and ws3 (x)

are correspondingly the symmetric and the antisymmetric
buckled configurations. The equilibrium positions are
defined by the symmetric solution with n = 1, while the
first antisymmetric solution will define the saddle points that
”separate” them.

The equilibrium buckling gives us a useful relation
between the unknown load and the measurable midspan
deflection b̂ = rb :

P̂ =
Eπ2

4l2
(
16I + Ab̂2

)
. (10)

In order to find the linear vibration modes around the
equilibrium position we will look for the solution in the form

w(x, t) =
b
2

(1 − cos 2πx) + v(x, t). (11)

Thus, the function v(x, t) that is searched in a form v(x, t) =

φ(x)eiωt have to satisfy a linearized, undampened, unforced
form of the Eq. (5) :

(1 + Mδ(x − x0))v̈ + viv + 4π2v′′ (12)

− 2b2π3 cos 2πx
∫ 1

0
v′ sin 2πx dx = 0,

with φ = 0 and φ′ =0 at x = 0 and x = 1.

The general solution of this equation at the limit M = 0
is already known (see [6]) :

φ0(x) =α sin λ1x + β cos λ1x (13)
+ γ sinh λ2x + η cosh λ2x + ζ cos 2πx.

where

λ1 =

√
2π2 +

√
ω2 + 4π4, λ2 =

√
−2π2 +

√
ω2 + 4π4.

It is easy to check that when M , 0 the general solution takes
form of

φ(x) = φ0(x) +
ω2M

4
√
ω2 + 4π4

φ0(x0)∆(x, x0), (14)

with ∆(x, x0) =

(
−

1
λ1

sin λ1|x − x0| +
1
λ2

sinh λ2|x − x0|

)
.

Choosing αi as a free parameter (that corresponds to
the amplitude of vibrations) and using the five equations
provided by (12) we derive the coefficients βi, γi, ηi, ζi and
the corresponding frequencies ωi for every mode number i.
We define the scalar product in the solutions space as

( f , g) =

∫ 1

0
f (x) (1 + Mδ(x − x0)) g(x)dx, (15)

so that after a normalization of our solutions we will obtain
an orthogonality condition

(φα, φβ) =

∫ 1

0
φα(x) (1 + Mδ(x − x0)) φβ(x)dx = δαβ. (16)

It is worth noting from that the obtained modes are
extremely sensitive to the mass position, particularly when
the mass is placed close to the beam center (see Figure 6).
This explains why we observed such a big difference in
linear frequency for different NESs when the mass was fixed
close to the beam center.
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Figure 6 – The calculated resonance frequencies as a
function of the non dimensional mass position. Curves :

blue - first mode, orange - second mode.

3.2 Numerical model
To describe high amplitude vibrations of the NES

we proceed with a discretization approach that uses the
linear mode shapes as a base for the Galerkin method. The
question of how many modes should be retained is quite
subtle. The main requirements that we pose for the model
is that it should describe both stable equilibrium positions.
Since the unstable equilibrium positions (9) can be seen
as characteristic for the snap-through motion, we should
have them in the model as well. Finally, the equilibrium
positions of the model should give us the linear vibration
frequencies close to the ones calculated earlier. The final
number depends a lot on the configuration, particularly on
the value of the added mass, its position and the buckling
level. This method applied for uniform beams with low
buckling levels shows that 3 modes is already enough to
meet the goals. In our case of high buckling and big added
mass we need at least 50 modes, having less than 10% error
on the frequency of the first mode.

In general case we write the solution of the problem as

w(x, t) = w1
s3

+

N∑
i=0

φi(x)qi(t), (17)

where φi(x) is the normalised spatial shape of the linear
mode i, qi(t) is the corresponding time-dependent unknown
variable, N is the number of retained modes and, finally,
w1

s3
is one of two unstable equilibrium positions that are

the saddle points for the NES potential energy. Substituting
expression 17 into the Eq. 5, multiplying by the normalized
linear mode φk, integrating over the space domain, using
integration by parts and finally simplifying we get a system
of N equations (the Einstein summation convention is used) :

q̈k +
(
Zki−

(
P −

1
2

WA
)
S ki

)
qi (18)

+
1
2
(
Rk + S kiqi

)(
2Rmqm + qnS nmqm

)
=

− cΦkiq̇i + Fk(t),

with

Zki =

∫ 1

0
φ′′k (x)φ′′i (x)dx, WA =

∫ 1

0
w1 ′ 2

s3
dx, (19)

S ki =

∫ 1

0
φ′k(x)φ′i(x)dx, Rk =

∫ 1

0
φ′k(x)w1 ′

s3
dx,

Φki =

∫ 1

0
φk(x)φi(x)dx, Fk(t) =

∫ 1

0
φk(x)F(x, t)dx.

Performing an orthogonal transformation on the q
coordinates we can diagonalize S ki that considerably
simplifies further simulations.

4 The experimental tests of the model
To estimate the precision of our model we can start with a

comparison of the obtained linear frequencies with the ones
we observe experimentally at small vibration amplitudes. For
this purpose we used a test NES configuration with a mass
shifted from the center (x0 = 0.35). The comparison of the
measured vibration responses and the predicted frequencies
is given on Figure 7 ; Figure 8 shows the calculated spatial
shapes of the modes for this test case.

Figure 7 – The FFT for the NES displacement measured at
the point x = 0.7. Curves : red - the first equilibrium
position, black - the second ; dashed gray - calculated

frequencies.

Figure 8 – Mode spatial shapes for the first (blue) and the
second (orange) modes of the test NES. The black dot

shows the position of the attached mass.

We can see that the model can describe the experimental
results only to a certain extent, being limited by our
approximation. We see that the asymmetry of the border
conditions has an observable effect on the linear frequencies.
It is worth to mention that the used beam is not completely
uniform and has variations in its width of about 0.02 mm that
gives a 10−15% error on the frequency. The peak at 105 Hz
for the first equilibrium position cannot be predicted by our
model since it corresponds to the torsion mode resonance of
the beam, which is not taken into account in our model.

In order to test the numeric model we couple our test
NES to a vibrating support, thus reducing the feedback of the
NES and simplifying the analysis of the results. We perform
a test with monochromatic excitation of constant amplitude
around the first linear resonance of the NES (similar to the
one done for the complete system). Figures 9 and 10 allows
a qualitative comparison between the experimental and
calculated responses of the NES. It is worth noting that we
observe the same NES behavior without any optimization.
This confirms the model’s ability to describe NES dynamics
at high excitation levels.

5 Conclusion
The experimental results show explicitly that the

presented low mass bi-stable NES is able to considerably
attenuate vibrations of a acoustically excited plate of much
bigger dimensions. Planning to attack the modeling of the
energy transfer we concentrate here on the NES properties
and propose a model that is able to describe both, the linear
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Figure 9 – The complete experimental dynamic density map
as a function of frequency and amplitude of excitation.

Figure 10 – The theoretical low amplitude dynamic density
map as a function of frequency and amplitude of excitation.

and the nonlinear regimes. We validate the model by a set of
experiments both in the linear and the nonlinear regimes.
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