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We present a new method (SLATCoW) for the recovery of complex wavenumbers from porous material guided
wave measurements. This method is based on the analysis of the spatial Laplace Transform of the measured
normal surface displacement in the frequency domain. The SLATCoW method is applied for the assessment
of the experimental complex shear modulus. Besides the recovery of complex wavenumbers from guided wave
measurements, the SLATCoW method paves the way to the experimental determination of the viscoelastic
parameters of porous materials together with the development of refined models to account for viscoelasticity.

1 Introduction
In surface wave physics, a system is dispersive as soon

as one of the characteristic dimensions is similar to the
wavelength of the wave propagating in it. To name but a
few, wave guides, sub-wavelength resonators embedded in
or deposited on a propagation medium, or even the structure
itself of a natural compound are some examples of systems
presenting dispersive behavior. The main feature of a
dispersive system is indeed the dependency of its properties
with the frequency. Another feature of dispersive systems,
related to dispersion, is the (non-geometrical) attenuation.
The Kramers-Kronig relations [3] reflect the relation
between the dispersion and the attenuation in such dispersive
systems, although the attenuation may belong to different
physical processes. Beside the geometrical attenuation,
the attenuation of waves can indeed be related to intrinsic
loss in a material (heat dissipation, viscosity, scattering,
photoelectric effect, etc.) or to the heterogeneity of the
system (band gap in photonic/phononic crystals, resonant
phenomena, etc.). Measuring both the dispersion and the
attenuation is of utmost importance in wave physics and for
material science, since it provides insightful information on
the tested system allowing the characterization of properties
(effective properties) of a material (heterogeneous system).

In general, plane waves in anelastic media are expressed
with a wavenumber along the planes of constant phase
direction and an attenuation factor along the planes of
constant amplitude direction. Assessment of complex
wavenumbers (the imaginary part represents the attenuation
factor) is then essential. In the framework of elastic guided
waves, a few methods have been developed for assessing
the attenuation. Some are based on direct measurements of
wave amplitude decrease with respect to time[8] or to the
propagation distance[9, 2]. These methods are well suited
for cases where a unique mode is generated and detected,
or at least where isolating one mode is achievable. Other
methods have in common to use an optimization process
which minimizes the error between a physical model and
the measured signals. A good understanding of the involved
waves is mandatory to propose a suitable minimization
problem and an associated experimental protocol. In
geophysics for instance, assuming Rayleigh wave is the
only detected mode, the recovery of complex wavenumbers
has been used to assess the attenuation associated both
to the geometric spreading and to the intrinsic energy
dissipation[9, 10, 11]. Note that a multichannel approach
has also been used in geophysics to estimate complex
wavenumbers with a beamforming techniques with complex
propagation constant[12].

In this paper, a method presenting none of these
restrictions is proposed. The method makes use of a spatial
Laplace transform to achieve the complex wavenumber
recovery from guided wave measurements. The acronym
is SLATCoW for Spatial LAplace Transform for COmplex

Wavenumber recovery. The method is presented and its
actual implementation is discussed in the first section. The
following section is dedicated to the application of the
SLATCoW method for the guided elastic waves in porous
materials.

2 The SLATCOW method
Guided wave measurements classically consist in

recording the normal displacement (or velocity) on the
surface of a flat sample along a line of length L when it
is excitated by a line source or a point source. Assuming
a time dependance e−iωt (ω is the angular frequency) and
neglecting the branch integrals arising from the application
of the residue theorem this displacement reads in the
frequency domain (ω is dropped for clarity) as the sum of
the contribution of each modes :

un(x) =
∑
m∈M

ũm
n exp (iKmx) Π(x − L), (1)

where n refers to the normal component of the total
displacement u(x), ũm

n is the complex amplitude of the m-th
mode, Km is the wavenumber of the m-th mode,M is the set
of modes, and Π(x − L) is the gate function equal to 1 when
x ∈ [0, L] and equal to 0 elsewhere. These wavenumbers Km

are usually considered purely real, but they are complex.
This is particularly the case when the sample is constituted
of dissipative materials, but also for some specific modes
resulting for example from mode hybridization or repulsion,
or in presence of bandgaps due to local resonance of
elements constituting the sample material. According to
the time Fourier transform convention, the expression of
Km has to be Km = km

r + ikm
i , with kr > 0 and ki > 0 for

Eq.(1) to involve only forward propagating modes. Applying
the usual spatial Fourier transform only enables to recover
km

r . In order to recover both real and imaginary parts of
Km a spatial Laplace transform is applied to un(x) denoted

Un(s) =

∫ ∞

−∞

un(x) exp (−sx) with s = si + isr. This spatial

Laplace transform takes the form

Un(s) =
∑

m

ũm
n

∫ L

0
exp ((iKm − s)x) dx

= L
∑

m

ũm
n exp ((iKm − s)L/2)

sinh ((iKm − s)L/2)
(iKm − s)L/2

.

(2)
The meaning of the spatial Laplace transform of the m-th
mode is ensured only if si ≥ −km

i , because this ensure the
energy decay of the m-th mode (related to exp

(
(−km

i − si)x
)

in Eq.(2)). The upper half space, the lower bound of
which is the maximum value of −km

i , with m ∈ M, is the
only admissible half space in the complex s-plane and
defines the region of absolute convergence of the Laplace
transform. Let us notice that the slice of Un(s) in the
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complex s plane at si = 0 exactly corresponds to the usual
spatial Fourier transform. Along this line, Eq.(2) reduces
to L

∑
m ũm

n exp ((kr − sr − iki)L/2) sinc ((kr − sr − iki)L/2),
where sinc(x) = sin(x)/x. The limit of the usual spatial
Fourier transform is strongly linked to the shift of poles
in the lower half space, the amplitude of the peaks being
reduced both by the amplitude of the mode |ũm

n | and by ki,
these values being unknown. Similarly, the quality factor
of the peak associated with the m-th mode can be low
due to small L value and large ki value. The influence of
the length of the line over which the Laplace transform is
performed clearly appears. This usually leads to problems
in the determination of km

r when two modes are close one
from the other or when they are highly (large value of ki)
attenuated. It is now proposed to show how the SLATCoW
method allows to overcome these limitations.

The problem when trying to recover Km is twofold :
the amplitude and phase of the mode are unknown and
the position of km

i in the complex s-plane is by definition
unknown. Therefore, we will focus the analysis on the upper
half space si > 0 where no mode Km is included. Inspired by
previous works on the recovery of the reflection coefficients
of higher order modes propagating in a square cross-section
impedance tube [4], the recovery of Km is performed for
each frequency by minizing the following cost function

F(|ũm
n )|, φm, km

r , k
m
i ) =

∑
sr

∑
si

∣∣∣Umes
n (s)−

L
∑

m

|ũm
n | exp (iφm) × exp

(
(i(km

r + ikm
i ) − si − isr)L/2

)
sinh

(
(i(km

r + ikm
i ) − si − isr)L/2

)
(i(km

r +ikm
i )−si−isr)L/2

∣∣∣∣∣ ,
(3)

where Umes
n (s) is the spatial Laplace transform of the

measured normal displacement, and |ũm
n | and φm are

respectively the theoretical amplitude and phase of the m-th
mode. Note that the L1-norm is used in Eq. 3 because it
leads to quite similar results as the usual L2-norm. The
latter should be preferred to analyze measures with low
signal- to-noise ratio. The minimization is performed under
constrains with the Matlab R©function fminsearchbnd. The
number of modes which has to be recovered is determined
a priori by looking at the usual spatial Fourier transform
for each frequency. The recovery of both the amplitude
and phase of each mode is more suitable than the direct
determination of their real and imaginary parts. This
particularly allows to avoid problems related to the unknown
amplitude, overlapping of modes and to polarization of the
mode. Roughly speaking, the recovery procedure could be
performed in two steps : (i) the positions of the peaks at
si = 0 give the values of km

r , (ii) at sr = km
r the exponential

decay is related to the value of km
i . However, each mode

strongly interacts in practice in the complex s-plane, which
emphasizes the requirement of using a model involving all
possible modes at a given frequency and the minimization
of the previous cost function to efficiently determine all the
possible Km.

3 Application to guided elastic waves
in porous material

Porous materials are known to be highly dissipative both
in acoustics thanks to viscothermal losses and in mechanics

through the solid-fluid phase interaction and the solid phase
viscoelasticity. Seminal works by Boeckx et al.[1, 2] have
paved the way for the characterization of the mechanical
parameters that are intrinsic to the solid porous material
phase by using guided waves. Nevertheless, these works
mainly focus on the experimental recovery of the phase
velocity vm

φ = ω/kr, due to a lack of both experimental
data and analyzing tools for the efficient determination
of the attenuation km

i . The present method is applied to
experimentally determine both real and imaginary parts
of the complex mode, therefore filling the gap for the
attenuation measurement and enabling future works for
characterizing viscoelastic parameters of porous material.

The experimental set-up, which is similar to the one used
in[1, 2], is depicted in Fig. 1 (a).

(2) Rigid backing

(3) Acoustic foam

(1) Vibrating shaker

(4) Laser vibrometer

Scanning line

Figure 1 – (a) Experimental setup : (1) shaker Bruel and
Kjaer type 4810, (2) rigid backing, (3) acoustic foam, and
(4) laser vibrometer Polytec OFV-503, (b) real part of the
velocity of the quasi-A0 mode, and (c) attenuation (Im (k))

of the quasi-A0 mode.

A high porosity (φ > 0.95) melamine foam sample of
85 cm length, 45 cm wide and 5.5 cm thick is glued on
a rigid backing. The excitation is provided by a shaker
(Bruel and Kjaer type 4810) which is rigidly attached to the
sample with an adaptive part of “T” shape. This adaptive
part is made of a threaded steel rod (20 mm length and
5 mm diameter) fixed to the shaker on one side and glued
on a 1 mm thick aluminum plate of width 10 cm and height
1.5 cm on the other side. This plate is cut at the width edge
(opposite to the threaded steel rod) and glued to the porous
sample creating a line source at 15 cm from on edge of
the sample. The plane wave excitation was experimentally
verified and the resonance of this adaptive part was measured
at 4500 Hz. Whilst the measurement could be ran at higher
frequencies (up to 8000 Hz with a relatively good signal to
noise ratio), results are only shown for frequencies below
this limit. The excitation is 300 sine function equally spaced
between 200 Hz and 4095 Hz. The normal displacement
un(x) is acquired at 801 positions along L = 40 cm with
a laser vibrometer (Polytec OFV-503) mounted on a one
dimensional robot, which moves the laser along the x-axis
after each frequency measurement is accomplished, and
connected to a spectral analyzer (Stanford Research Systems
SR785), which allows us to directly measure un(x) in the
frequency domain. Each measurements is average over 100
periods.

The parameters of the porous materials, density
ρ, porosity φ, flow resistivity σ, viscous and thermal
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characteristic length Λ and Λ′, shear modulus N = 38 kPa
(real part) and Poisson ratio ν = 0.3 were determined
independently using standard methods [5] and are given in
Table 1. The so-called damping parameter Im(N), which
is usually considered as a constant has been determine by
fitting the experimental curves with the model. The present

Tableau 1 – Material parameters for the melamine foam.

φ ρ( kg.m−3) α∞ σ( N.s.m−4) Λ( µm) Λ′( µm)
0.989 6.1 1 8060 215 215

method is applied one frequency after the other to obtained
dispersion curves. More than 8 quasi-Lamb (because the
sample is rigidly backed) modes can be recovered over
this frequency range. This measurement is known to be
difficult because of the highly dissipative nature of the
sample, the low frequency excitation, and the large distance
over which measurements have to be conducted. Indeed,
for the resolution to be sufficient to discriminate all these
modes, measurements should be performed over at least
a few meters which is usually impossible. We choose to
focus on the quasi-A0 mode which was the most excited
one. Problems arise because several modes overlap in
the vicinity of this mode. The procedure was applied to
recover 3 modes near the quasi-A0 mode in order to remove
the remaining components of the others. The real part of
velocity (Re(c) = Re(ω/K) and the attenuation (ki) versus
frequency are plotted in Fig.1 (b) and (c) respectively, and
compared to theoretical predictions obtained using Stroh
formalism[6, 7] and a Müller algorithm to determine the
complex roots of the corresponding complex dispersion
relation. Measurement agree well with the theoretical
predictions when the imaginary of N is fixed such that
N = 38 − 4i kPa. This value is in accordance with the
literature. Some obviously wrong measurements points
were removed at low frequency. These results prove the
efficiency of the present method to discriminate mode
when several are overlapping. Furthermore, it was found
that the Poisson ratio has a poor influence on the results,
while the real part of N strongly influence the real part of
the velocity and its imaginary part strongly influence the
attenuation of the mode (which has enabled us to determine
its value). The attenuation of the mode in porous materials
are experimentally determined in a precise way thanks to
SAW measurement for the first time. This pave the way to the
experimental determination of the viscoelastic parameters of
porous materials together with the development of refined
models to account for viscoelasticity.

4 Conclusion
A new method for the recovery of the real and imaginary

parts of wavenumbers from guided wave measurements
is presented. This method, named SLATCoW (Spatial
Laplace Transform for COmplex Wavenumber recovery),
is based on a spatial Laplace transform of the measured
displacement (or velocity) in the frequency domain, instead
of the usual spatial Fourier Transform. The Laplace
transform, providing informations both on the real and
imaginary parts of the poles, is analyzed thanks to the

minimization of a correctly chosen cost function (either
L1-norm or L2 norm). This allows to reconstruct complex
wavenumber (as well as the complex amplitude) of the
modes, even when they are interacting one with the other.
The SLATCoW method was applied to guided waves in a
porous materials (attenuant in essence) in the kHz regime for
the characterization of the viscoelastic properties the solid
phase. The SLATCoW method was permitted to reconstruct
the complex wavenumber of the quasi-A0 mode. Besides
the recovery of complex wavenumbers from guided wave
measurements, the SLATCoW method paves the way to the
experimental determination of the viscoelastic parameters of
porous materials together with the development of refined
models to account for viscoelasticity.
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