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The propagation properties of a three-dimensional sonic crystal made of square-rod rigid scatterers incorporating a
periodic arrangement of quarter wavelength resonators are theoretically and experimentally reported in this work.
The periodicity of the system produces Bragg band gaps that can be tuned in frequency by using the orientation
of the square-rod scatterers with respect to the incident wave. In addition, the quarter wavelength resonators
introduce resonant band gaps that can be tuned by the coupling between the neighbor resonators. Bragg and
resonant band gaps can overlap allowing the wave propagation control inside the periodic medium. In particular
we experimentally and theoretically show that this system can produce a broad frequency band gap exceeding two
and a half octaves (from 590 Hz to 3220 Hz) with transmission lower than 3% in the whole frequency range. Finite
element methods are used to calculate the dispersion relation of the locally resonant system. To study the wave
propagation in the semi-infinite structures and to compare with the experiments performed in an echo-free chamber,
the visco-thermal losses are accounted for in the quarter-wavelength resonators. The numerical predictions are
compared with the experimental results measured in an echo free chamber showing good agreement. This work
motivates interesting applications of this system as acoustic audible filters.

1 Introduction
Periodic arrays of rigid scatterers embedded in a fluid

are the analogues for the acoustic waves of the crystalline
structures for the electrons or the photonic crystals for
the electromagnetic waves. Such structures are known as
Sonic Crystals (SCs) [1] and the exploitation of the periodic
distribution of scatterers in such structures have been
intensively used to control the acoustic wave propagation.
The dispersion relation is governed particularly by both
the periodicity and the shape of the scatterers providing
different tools to manage the wave propagation. Perhaps
the most known property of such systems is the presence
of band gaps, ranges of frequencies in which the wave
propagation is forbidden. The band gaps appear at high
symmetry points in the Brillouin zone due to the presence
of a degeneracy of the band structure produced by the
Bragg interferences at frequencies in the diffractive regime
(λ ≃ a, λ being the wavelength of the incident wave and
a the lattice constant characterizing the periodicity of the
structure). Many interesting physical phenomena arise from
this particular dispersion relation such as wave localization
[2], excitation of evanescent waves [3], as well as relevant
applications concerning filtering [4] and wave guiding [5].
In particular, many approaches have been proposed to lift the
band degeneracy and thus enlarge the band gaps [6]. Some
possibilities consist of either reducing the total symmetry
of the crystal in order to remove some band degeneracies,
allowing the appearance of complete gaps [7] or optimizing
the shape of the scatterers [8].

Interesting properties can be obtained in the low
frequency regime (λ << a) in periodic structures if local
resonators are used as scatterers. In acoustics, the pioneering
works of Bradley [10] and Sugimoto [11] theoretically and
experimentally examined the propagation of sound waves
in a waveguide loaded periodically with local resonators
(quarter-wavelength and Helmholtz resonators). In these
systems two different mechanisms are responsible to
the generation of band gaps. In addition to the Bragg
interferences producing the band gap due to the periodicity,
the resonance produces an other band gap when the
frequency of sound waves coincides with the natural
frequency of the resonators, producing a hybridization
between the resonance and the dispersion of the non
resonant periodic structure. This fact has been used to
introduce the concept of acoustic metamaterials with
resonant band gaps at low frequencies, orders of magnitude
smaller than the Bragg band gap [12, 13], as well as to

improve the absorption capabilities of porous materials in
the low frequency regime [14].

In this article we exploit the idea of the direct coupling of
the local resonant scatterers to generate multiple resonances
that can be combined with the effect of periodicity in
order to produce a broadband frequency region with high
transmission loss. We experimentally and theoretically
study the propagation properties of a three-dimensional
SC made of square-rod rigid scatterers incorporating a
periodic arrangement of quarter wavelength resonators.
Particularly, we analyze different configurations in which
the indirect coupling between the resonators in the structure
generates multiple resonances that are designed to be close
to the Bragg band gap. The combined effect produces an
overlap of the stop bands that can be used to strongly reduce
the transmission in a broadband range of frequencies. In
particular, we experimentally and theoretically show that the
system can produce a broad frequency band gap exceeding
two and a half octaves (from 590 Hz to 3220 Hz) with
transmission lower than 3% in the whole range. Finite
element methods are used to study the dispersion relation of
the locally resonant system. To study the wave propagation
in the semi-infinite structures and to compare with the
experiments performed in an echo-free chamber, the visco-
thermal losses are accounted for in the quarter-wavelength
resonators.

2 Experimental set-up
The resonant scatterers are square-rod scatterers made

of wood (acoustically rigid for the ranges of frequencies
analyzed in this work) with side length l having a 1D periodic
array of quarter wavelength resonators incorporated in one
of its faces, with periodicity az. The quarter wavelength
resonators are made by drilling cylindrical holes of radius R
and length L in one of the faces of the square rod scatterer.
The resonant square rod scatterers are placed in a square
array of periodicity a. Figure 1(a) shows the scheme of the
resonant square rod scatterer showing the parameters of the
unit cell of the crystalline structure analyzed in this work.
Figure 1(b) shows the scheme of the finite array analyzed
in this work as well as a picture of the SC in the anechoic
chamber. As shown in the inset of the Fig. 1(b) the unit cell
can be rotated by an angle θ with respect to the center of the
resonant square rod scatterer, adding a degree of freedom to
manage the dispersion relation of the system.

The experimental prototype consists of a 14 × 6 array,
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(a) (b)

Figure 1 – (a) Scheme of the resonant square-rod scatterer showing two unit cells. The horizontal planes delimit the bounds of
the unit cell. (b) Scheme of the finite SC made of N rows of scatterers. Four points, xi with (i = 1,2,3,4), are used to evaluate

the transfer matrix elements. The insets represent a picture of the SC in the anechoic chamber used in the experimental
characterization and the definition of the angle of rotation of the unit cell, θ, with respect to the x-axis.

located on a square lattice with constant a = 7.5 cm with
a vertical periodicity of the quarter wavelength of az = 5
cm. The scatterers have a side length l = 5 cm. The quarter
wavelength resonator has a radius R = 3.5 cm and length
L = 4 cm. The scatterers are 2 m long.

All the acoustic measurements are performed using a
microphone B&K 1/4” type 4135. The acoustic source
was the loudspeaker Genelec 8351A. The movement of
the microphone in the anechoic chamber is controlled by
a 1D robotized arm (Zaber LSQ) designed to move the
microphone over a 1D trajectory in steps of 1 cm. The
acquisition of the acoustic signal is done using the Stanford
SR 785 analyzer. The movement of the robotized arm and
the acquisition are synchronized by a computer. Once the
robotized system is turned off, the acoustic source generates
a swept sine signal and the microphone detects it. The
analyzer provides the frequency domain signals (module and
phase for each frequency).

In the approach considered here, a loudspeaker placed in
xs = 0 was used to generate the acoustic field in the anechoic
chamber, and a single microphone was used to measure
the transfer functions between the signal provided to the
loudspeaker and the sound pressure at the four locations
shown in Fig. 1(b). Those transfer functions are denoted P1
to P4. The loudspeaker is placed far enough from the SC, so
that the wave front is considered plane, however, we have
to consider that the amplitude of the wave decays as 1/

√
xi

where xi is the distance between the loudspeaker and the
i-th location of the microphone. For the present purposes
P1 to P4 may be considered to represent the complex sound
pressure at the four measurement locations x1 to x4, i.e.,

P1 = A
e−ıkx1

√
x1
+ B

eıkx1

√
x1
, P2 = A

e−ıkx2

√
x2
+ B

eıkx2

√
x2
,

P3 = C
e−ıkx3

√
x3
+ D

eıkx3

√
x3
, P4 = C

e−ıkx4

√
x4
+ D

eıkx4

√
x4
. (1)

Here, k represents the wave number in the ambient fluid
and e+ıωt sign convention has been adopted (ω = 2π f is the
angular frequency with f the frequency). The four complex
pressures, P1 to P4, comprise various superpositions
of positive- and negative-going waves in the up- and
downstream segments of the anechoic chamber; the complex

amplitudes of those waves are represented by the coefficients
A to D. Equations (1) yield four equations for the coefficients
A to D in terms of the four measured sound pressures, i.e.,

A =
ı(

√
x1P1eıkx2 −

√
x2P2eıkx1))

2 sin(k(x1 − x2))
,

B =
ı(

√
x2P2e−ıkx1 −

√
x1P1e−ıkx2))

2 sin(k(x1 − x2))
,

C =
ı(

√
x3P3eıkx4 −

√
x4P4eıkx3))

2 sin(k(x3 − x4))
,

D =
ı(

√
x4P4e−ıkx3 −

√
x3P3e−ıkx4))

2 sin(k(x3 − x4))
. (2)

The latter coefficients provide the input data for
subsequent transfer matrix calculations. Here, the transfer
matrix is used to relate the sound pressures and normal
acoustic particle velocities on the two faces of the SC
respectively located at x0 and xd as in Fig. 1(b), i.e.,

[
P
V ]

x0

= [
T11 T12
T21 T22

] [
P
V ]

xd

. (3)

In Eq. (3), P is the exterior sound pressure and V is the
exterior normal acoustic particle velocity. The pressures and
particle velocities on the two surfaces of the SC may easily be
expressed in terms of the positive- and negative-going wave
component amplitudes, i.e.,

P(x0) =
Ae−ıkx0 + Beıkx0

√
x0

, V(x0) =
Ae−ıkx0 − Beıkx0

√
x0 ρc

,

P(xd) =
Ce−ıkxd + Deıkxd

√
xd

, V(xd) =
Ce−ıkxd − Deıkxd

√
xd ρc

. (4)

where ρ is the ambient fluid density and c is the ambient
sound speed. Thus, when the plane wave components are
known based on measurements of the complex pressures
at four locations, the pressures and the normal particle
velocities at the two surfaces of the SC can be determined.

It is then of interest to determine the elements of the
transfer matrix since, as will be shown below, the elements
of that matrix may be directly related to the properties of the
SC. Then, instead of making a second set of measurements
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Figure 2 – Semi infinite slab of N = 7 resonators. Periodic boundary conditions are considered in the y and z directions while
PML conditions are considered in the boundaries of the x direction. A plane wave impinges the slab from the negative values of

the x-axis.

it is possible to take advantage of the reciprocal nature of the
SC. Thus, given reciprocity and symmetry, it follows that

T11 = T22, (5)
T11T22 − T12T21 = 1. (6)

Then, the transfer matrix elements can be expressed directly
in terms of the pressures and velocities on the two surfaces
of the SC. Therefore, if the transmission coefficient is defined
as T = C/A, and we consider anechoic termination, D = 0, it
can be expressed in function of the elements of the transfer
matrix

T =
2
√

xdeık(xd−x0)

(
√

x0(T11 + T12/(ρc) + (ρc)T21 + T22))
. (7)

3 Numerical characterization
Due to the complexity of the geometry of the resonant

square-rod scatterers we choose numerical methods to solve
both the eigenvalue and the scattering problems. The Finite
Elements Method (FEM) is used for this purpose. Therefore
it is necessary to define the symmetry, discretize the domain
and consider the boundary conditions for each configuration.
In the following subsections we will give the details for each
configuration. In a general way, we discretize the domains
at least with 10 points for the minimal analyzed wavelength,
λmin. The study has been performed in a range of normalized
frequencies, f a/c, from 0 to 0.8, therefore λmin = 0.8a.

3.1 Eigenvalue problem
The eigenvalue problem is solved to obtain the dispersion

relation of the periodic medium. The problem ω(k) is solved
using only the unit cell of the crystal and applying the
Floquet-Bloch periodic conditions. The properties of the
Bloch states constrain the solution to a unit cell with Bloch
vectors in the first Brillouin zone. The unit cell is shown in
Fig. 1(a). Neumann boundary conditions, representing rigid
walls, are considered on the walls of the scatterer. In the
entrance of the quarter wavelength resonator the continuity
of the pressure and velocity are imposed. By fixing the
wavevector, k, in the irreducible Brillouin zone of the unit
cell we can obtain the eigenfrequencies for each wave vector.
These features transform the unit cell in a bounded domain
to solve the problem with the next boundary condition at the

borders of the unit cell

p(Ð→r +
Ð→
R ) = p(Ð→r )eı

Ð→
kB
Ð→
R , (8)

where
Ð→
R is the lattice vector and kB is the Bloch vector that

scans the first irreducible Brillouin zone. In our work, the
unit cell is a cubic one, therefore

Ð→
R = (naÐ→ux +maÐ→uy + laz

Ð→uz .
In this work we will not consider the effect in the z-direction,
therefore we study the dispersion relation considering the
variation of the kBx = [0, π/a] and kBy = [0, π/a] in the first
irreducible zone of Brillouin of a cubic lattice having kBz = 0.

3.2 Scattering problem
Considering the wave propagation in free space

(unbounded acoustic domain) the assumption that no waves
are reflected from infinity is taken. This is known as the
Sommerfeld condition. The solutions of exterior Helmholtz
problems that satisfy the Sommerfeld conditions are called
radiating solutions. Using FEM it is only possible to obtain
some approximation of the radiating solutions in unbounded
domains by applying some artificial boundaries in the
numerical domain. We use the perfectly matched layers
(PML) technique to this purpose.

The geometry considered in this work is shown in
Fig. 2. We considered a semi-infinite slab made of N
resonators; periodic boundary conditions are used in the y
and z directions therefore the structure is infinite in y and z
directions but finite in the x one. A plane wave impinges the
structure from the negative x-axis and the PML condition is
considered at the apendicular x-domain in the extremes of
the domain in the x direction to numerically reproduce the
Sommerfeld condition in this direction. The acoustic field
will be evaluated in the yx-plane, crossing the unit cell in the
middle of resonator.

The losses in the quarter-wavelength resonators are
taken into account by considering the Zwikker and Kosten
model [15], which provides the expression for the equivalent
density and bulk modulus in the cylindrical tube of radius R
as,

ρeq =
ρ

1 − 2(−ıω/ν)−1/2G (R(−ıω/ν))
1/2

/R
, (9)

Keq =
γP0

1 − 2(γ − 1)(−ıω/ν′)−1/2G (R(−ıω/ν′))
1/2

/R
, (10)

where ν = 1.47 10−5 m2s−1 is the kinematic viscosity of air,
ω is the angular frequency of the wave, ν′ = 2.22 10−5 is the

CFA 2016 / VISHNO11-15 avril 2016, Le Mans

1114



0

0.2

0.4

0.6

0.8

Γ X M Γ
 

 

k (m
−1

)

f 
a
/c

0

0.2

0.4

0.6

0.8

 

 

k (m
−1

)

f 
a
/c

Γ X
0

453

907

1360

1813

2266

2719

3172

3625

0,5 1

F
re

q
u
e
n
c
y
 (

H
z
)

T
2

 

 

Experimental

Numerical

Lossless Num.

(b)(a)

(i) (ii) (iii)

(iii)

(ii)

(i)

Figure 3 – Characterization of the locally resonant SC with the scatterers placed with θ = π/2. (a) shows the dispersion relations
for the resonant SC ( ) in comparison with the ones without the quarter-wavelength resonator, i.e., just square-rod scatterers

( ). Gray area represents the full band gap opened by the presence of the resonators in the SC. Insets (i), (ii) and (iii)
represents the eigenvectors at frequencies shown in the dispersion relation with the dots. (b) Upper panel represents the

solutions of the numerical predictions for the scattering problem at the resonant frequency of the quarter-wavelength resonators.
Left panel represents the dispersion relation in the ΓX direction. Gray areas represent the pseudo band gaps at this normal

incidence. Right panel represents the transmission coefficient of a finite slab made of 6 rows of resonant square rods.
Continuous (Dashed) line represents the numerical predictions with (without) losses in the resonators. Open circles represent

the experimental measurement.

thermal diffusivity of air, and the function G(x) is defined as,

G(x) =
J1(x)
J0(x)

, (11)

where Jn is the Bessel function of n−th order and first kind.

4 Results
Before studying the periodic structures, we start by

analyzing the transmission through one row of resonant
square rod scatterer with θ = π/2. This will allow us
to characterize the resonant frequency of the quarter-
wavelength resonator. Figure 4(a) shows the transmission
coefficient, T 2, for this system. Numerical simulations
with and without losses in the resonators are plotted using
continuous and dashed black lines respectively. Red
open circles show the measured transmission coefficient.
The minimum of transmission appears at the resonant
frequency of the quarter-wavelength resonators. In fact, if
we numerically evaluate the acoustic pressure field at this
frequency, f a/c = 0.3824, we can observe [see Fig. 4(b)]
that the resonance is activated and the acoustic field is mostly
localized in the resonators. Notice that for this configuration
the effect of the losses is not so much sensitive, however, we
maintain the presence of losses because, as we will see later,
this effect is not negligible when increasing the number of
resonators.

4.1 Single resonant SC made of square-
rod scatterers with quarter wavelengths
resonators

The dispersion relation numerically obtained for a SC
made of resonant square rods with θ = π/2 is shown in
Fig. 3(a) with black lines. In order to compare with the
non resonant case, we have represented the band structures
for the same square rods without the quarter wavelength
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Figure 4 – Characterization of a row of resonant square rod
scatterers with θ = π/2. (a) Transmission coefficient, T 2, of
a row of resonant square rod scatterer. Continuous (Dashed)

line represents the numerical predictions with (without)
losses in the resonators. Red open circles represent the
experimental measurement obtained with the method

explained in Section 2. Big dot represents the numerical
value of the transmission coefficient at the resonant

frequency of the quarter-wavelength resonators,
f a/c = 0.3824. (b) Pressure field numerically obtained by

solving the scattering problem, as shown in Section 3, at the
resonance frequency of the quarter wavelength resonators.

resonators (red lines)[9]. While the non resonant structure
does not present full band gaps, the SC with the resonant
square rod scatterers presents a full band gap [gray area in
Fig. 3(a)] around the resonant frequency of the quarter-
wavelength resonators, due to the hybridization of the
resonance with the background medium.

If we pay attention to the ΓX direction, i.e., normal
to the SC interface as it is plotted in Fig. 1(b) three
band gaps are present [see Fig. 3(b)]. The first one due
to the hybridization band around the resonant frequency
of the quarter wavelength resonators; the second one is
produced by the Bragg interferences inside the SC due to the
periodicity around f a/c = 0.5; and the third one is produced
by the coupling of the second Bragg band gap and the second
resonant mode of the resonators [see the eigenvector (iii) in
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Fig. 3(a)].
The transmission coefficient is evaluated for a slab made

of 6 rows of resonant square rod scatterers with θ = π/2.
The results are plotted in the right panel of Fig. 3(b). The
three stop bands are well recognized both numerically
and experimentally in the transmission coefficient. We
would like to notice here the effect of the losses due to the
visco-thermal effect in the quarter-wavelength resonators.
Black continuous line represents the numerical transmission
coefficient with losses, while the dashed line without. As
predicted in previous works [16, 17], the effect of losses
is more important in the regions with high dispersion and
small group velocity. In our problem, the values of the
transmission with losses is reduced more than a half around
these particular regions. From now on, all the numerical
results concerning the transmission coefficient will consider
the losses.

4.2 Multi-resonant SC made of square-rod
scatterers with quarter wavelengths
resonators

Using the degree of freedom given by the rotation of
the resonant scatterers we can evaluate a configuration
which consists of facing four different resonant square rod
scatterers as shown in Fig. 5. The direct coupling between
the resonators allows the system to produce additional
resonances in the range of frequencies of interest, which
introduce more band gaps in the dispersion relation and
broaden the range of frequencies with no transmission
through the structure.

2
a

2a

x

y

l

X

M

Γ

L

Figure 5 – Unit cell facing four different resonant square rod
scatterers.

Figure 6 shows the numerical predictions and
experimental results for the configuration facing four
neighbor resonant square rod scatterers. Figure 6(a) shows
the dispersion relation of such a periodic distribution. Seven
full band gaps are opened in this configuration. Different
kind of phenomena are mixed in this system. On one hand,
as in the previous structures, the periodicity opens band
gaps due to Bragg interferences as for example the first and
second band gaps around the eigenvector (i) [see the Fig.
6(b)], and the resonances of quarter wavelength resonators
open band gaps due to this resonance, for example around
the frequency of the eigenvector (iv). However, the interest
of such configuration is the direct coupling between the four
scatterers. This opens resonant band gaps at frequencies
different from those of an isolated quarter wavelength
resonator. For example, band gaps around the frequencies of
the eigenvectors (iii) and (v) are results of this phenomenon.

This concentration of band gaps in the range of frequencies
of interest can be used to produce a broad band of low
transmission.

The transmission through a finite structure made of three
unit cells of four faced resonant square rod scatterers (total
N = 6 resonant square rod scatterers in the x-direction) is
analyzed in the right panel of Figure 6(a). In the numerical
simulations, continuous line, we observe that the band
gaps predicted by the eigenvalue problem are reproduced
in the transmission. Moreover, the effect of the losses
in the resonators destroys the transmission peaks that
should be produced by the flat bands in the dispersion
relation. As previously mentioned, the flat bands having
a small group velocity and high dispersion, are strongly
affected by the presence of losses in the system, destroying
any propagation around this areas. Experimentally, the
transmission coefficient also reproduces the band gaps
predicted by these eigenvalue problem in agreement with
the numerical evaluation of the transmission coefficient. The
slightly differences between the experimental results and the
numerical ones, can be due to the presence of additional
losses in the system, as for example those coming from
the viscothermal losses produced between the walls of the
resonant square rod scatterers that are not considered in
this work. Regarding the transmission of this system, we
can see that the combined effect of periodicity and coupled
resonators produces an overlap of the band gaps that can
be used to strongly reduce the transmission in a broadband
range of frequencies. In particular we experimentally and
theoretically show that the system can produce a broad
frequency band gap exceeding two and a half octaves, from
590 Hz to 3220 Hz, with transmission lower than 3% in the
whole range.

5 Conclusions
In this work we use acoustic waves to experimentally

prove the physical properties of modulated resonant systems
made of resonant square-rod scatterers as well as to design
broadband or selective filtering of acoustic waves. Extensive
simulations and experimental results in order to show
tunable transmission properties of arrays made of resonant
square-rod scatterers embedded in air are performed here.
We have experimentally and theoretically shown that by
rotating some of the resonant square-rod scatterers of a
square array, one can easily activate the coupling between
them producing additional band gaps in the dispersion
relation as well as modifying the Bragg interferences.
The combined effect of the periodicity and the coupled
resonances produces an overlap of the stop bands that can
be used to strongly reduce the transmission in a broadband
range of frequencies. In particular, we experimentally and
theoretically show that the system can produce a broad
frequency band gap exceeding two and a half octaves (from
590 Hz to 3220 Hz) with transmission lower than 3% in the
whole range. This work could also be effectively extended
to progressing toward the realization of tunable systems
for light, liquid, and other waves, which will lead to great
potential in ultrasonics for example. The tunability we
demonstrated in this work could be applied to control not
only the band gap but other properties of the system.
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Figure 6 – Characterization of the configuration with four face to face quarter wavelength. (a) Left panel represents the
dispersion relation in the ΓX direction. Gray areas represent the pseudo band gaps in this incidence. Right panel represents the

transmission coefficient of a finite slab made of 6 rows of resonant square rods. Continuous line represents the numerical
predictions with losses in the resonators. Open circles represent the experimental measurement. (b) Panels representing the

eigenvectors at frequencies shown in the dispersion relation (left panel of (a)) with the dots.
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Llinares, Large two-dimensional sonic band gaps,
Phys. Rev. E, 60, R6316, (1999).

[7] M. Kushwaha, P. Halevi, L. Dobrzynski & B. Djafari-
Rouhani, Acoustic Band Structure of Periodic Elastic
Composites, Phys. Rev. Lett., 71, 2022–2025, (1993).

[8] C. Goffaux, J. P. Vigneron, Theoretical study of a
tunable phononic band gap system, Phys. Rev. B,
64, 075118, (2001).

[9] V. Romero-Garcı́a, C. Lagarrigue, J. P. Groby, O.
Richoux & V. Tournat, Tunability of band gaps and
waveguides in periodic arrays of square-rod scatterers:
Theory and experimental realization, J. Phys. D: Appl.
Phys, 46, 305108, (2013).

[10] C. E. Bradley, Acoustic Bloch wave propagation in
a periodic waveguide, Texas Univ At Austin Applied
Research Labs, (1991).

[11] N. Sugimoto & T. Horioka, Dispersion characteristics
of sound waves in a tunnel with an array of Helmholtz
resonators, J. Acoust. Soc. Am., 97, 1446, (1995).

[12] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan &
P. Sheng, Locally Resonant Sonic Materials, Science,
289, 1734, (2000).

[13] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich,
C. Sun & X. Zhang, Ultrasonic metamaterials with
negative modulus, Nature Materials, 5, 452–456,
(2006).

[14] J. P. Groby, B. Nennig, C. Lagarrigue, B. Brouard,
O. Dazel & V. Tournat, Enhancing the absorption
properties of acoustic porous plates by periodically
embedding Helmholtz resonators, J. Acous. Soc. Am.,
137, 273–280, (2015).

[15] C. Zwikker & C. Kosten, Sound absorbing materials,
Elsevier Publishing Company, New-York, (1949).

[16] A. Duclos, D. Lafarge & V. Pagneux, Transmission of
acoustic waves through 2D phononic crystal: visco-
thermal and multiple scattering effects, Eur. Phys. J.
Appl. Phys., 45, 11302, (2009).

[17] G. Theocharis, O. Richoux, V. Romero-Garcı́a &
V. Tournat, Slow sound propagation in lossy locally
resonant periodic structures, New J. Phys., 16, 093017,
(2014).

CFA 2016 / VISHNO 11-15 avril 2016, Le Mans

1117


