
C F A / V I S H N O 2 0 1 6
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Resonance trapping phenominon in an open quantum system has been recently observed in an open microwave
cavity. With increasing coupling strength to the continuum of decay channels, only a few resonances align with
the open channels and become short lived, while the widths of the remaining resonances first increase but finally
decrease again and become long lived (trapped modes). In this paper, we present an analogy of resonance trapping
in open quantum system to modes in an acoustic close system, a waveguide with impedance boundary conditions.
Our results show that resonance trapping may take place not only in open systems as illustrated in the literature,
but also in close systems. The important ingredient is the exist of Exceptional Points (EPs). Our analogy provides
a nouvel insight into resonance trapping and provide a new point of view for understanding the mode behaviours
in waveguides.

1 Introduction
Mode in an infinite Waveguide with Impedance Boundary

Conditions (WIBC) is given, as a basic concept, in textbooks
such as Refs. [1, 2]. It provides a deep understanding of
the complex sound field in a waveguide. Mode propagation
in a waveguide with finite length of impedance boundary
conditions (called liner) has also important industrial
applications, e.g., lined nacelles of an aircraft engine,
ventilating systems, underwater acoustics etc.

There are an infinite number of modes in a WIBC. They
can be classified in two categories[3, 4, 5] : guided modes
resulting from the finiteness of the waveguide geometry, and
surface modes that exist only near the waveguide wall and
decay exponentially away from the wall when impedance is
spring like. A typical eigenvalue distribution for a cylindrical
WIBC is shown in Fig. 1[6] when K = 30, β0 = 0.4 + 0.2 j
which are typically industrial values in the lined intakes
of an aeroengine. There is only one surface mode when
m = 0 as shown in Fig. 1 (upper panel). There are an infinite
number of discrete surface modes in a cylindrical WIBC
corresponding to m = 0 − ∞, as shown in Fig. 1(a) by “⊕”.
For each azimuthal order |m| (except m = 0), there are only
two (+|m| and −|m|) surface modes which are in degeneracy.
It is noted that this degeneracy is totally different from
the branch points and exceptional points in the following
sections. In the lower panel (a) of Fig. 1, each ⊕ corresponds
to one |m|. They are arranged as m = 0, ±1, ±2, · · ·,
from left to right. The decaying rates of the surface mode
amplitudes away from the wall are decided by the imaginary
parts of the surface mode eigenvalues γm. A typical surface
mode profile corresponding to m = 2 is shown in the lower
panel (c) and (d) of Fig. 1. It needs to stress that the surface
modes in a WIBC are asymptotic solutions in high frequency
ω. The eigenfunctions become exponentially decaying along
r like eω|=m(γ)|(1−r)/

√
r,[5] where =m refers to the imaginary

part. Strictly speaking, they should be called “quasi-surface
modes”. The eigenvalues of guided modes are marked by
“o” in the lower panel (a) of Fig. 1. The eigenfunction of
guided mode (2, 1), as an example, is plotted in the lower
panel (b) of Fig. 1.

There exist double eigenvalues in WIBC, which was
first inquired by Morse[7], and then studied in detail by
Tester[8, 9], Zorumski et al[10], Shendrov[11]. It has been
shown that the corresponding impedances are square root
branch point in the complex admittance plane. Recently, the
corresponding coalescences of eigenfunctions at the branch
points and their important effects on the sound propagation
has been shown by Bi and Pagneux[6]. It needs to point
out that Tester[8, 9] and Mechel [3, 4] linked the branch
points with the Creamer’s optimum impedance. Creamer’s
optimum impedance in an infinite WIBC, proposed firstly
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Figure 1 – Typical eigenvalues and eigenfunctions in a
WIBC.

Upper panel : eigenvalues when m = 0.
Lower panel : (a) eigenvalues when |m| = 0 − 30. ⊕ refers to
surface modes (eigenvalues corresponding to Im(γmn) > 3 in

this figure), (b) eigenfunction (not normalized) of guided
mode (2,1), whose eigenvalue is shown as � in the branch of
guided modes in (a), (c) eigenfunction (not normalized) of

surface mode m = 2, whose eigenvalue is shown as � in the
branch of surface modes in (a), (d) the eigenfunction profile

along r of surface mode m = 2. K = 30, β0 = 0.4 + 0.2 j.

by Cremer[12] is an impedance at which the maximum
attenuation of the least attenuation mode achieves. It has
been one of the most important liner design method,
e.g., [13, 14, 15, 16, 17, 18, 19, 20]. Tester[8, 9] argued
that not only the Cremer’s optimum impedance might be
corresponding to a branch point, but also for any pair of
neighbour modes, the corresponding branch points might be
the optimum impedance at which one of the mode achieve
maximum attenuation. We have carried out numerous
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calculations and observed similar conclusions[6].
The mechanism of the possibly maximum attenuations

at branch points is not explained to date. As was pointed
by Tester[8] in 1973 that “A most intriguing property
of theoretical and experimental decay rates of modes in
lined ducts, for which there is no obvious explanation, is
the existence of maximum decay rates for values of the
liner impedance which, at first sight, are arbitrary and
totally unconnected with any simple results associated with
absorption by reflecting boundaries.”. This work is motivated
by Tester’s curious question.

Resonance trapping phenominon in open quantum
system has been recently observed in an open microwave
cavity[21]. With increasing coupling strength to the
continuum of decay channels, only a few resonances
(modes) align with the open channels and become short
lived (the widths of resonances, or the imaginary parts of
the eigenvalues of mode, increase), while the widths of
the remaining resonances (modes) first increase but finally
decrease again and become long lived (trapped modes).
The decoupling of some resonances (modes) from the
open channels takes place, although the coupling strengths
increase, and different times scales appear.

2 Model
We consider an infinite long cylindrical waveguide, of

uniform and circular cross section, having locally reactive
impedance wall boundary conditions. The impedance is
assumed uniform along axial and circumferential directions,
respectively. Linear and lossless sound propagation in air
is assumed. With time dependence exp( jωt) omitted, the
eigenvalues γ and eigenfunctions φ of modes satisfies the
Laplacian eigenvalue problem

∇2
⊥φmn = −γ2

mnφmn, (1)

where

∇2
⊥ =

1
r
∂

∂r
(r
∂

∂r
) +

1
r2

∂2

∂θ2 , (2)

with the boundary condition

∂φmn

∂r
= Yφmn, at r = 1, (3)

where m and n refer to, respectively, the circumferential
and radial mode indices. Y = − jKβ0. β0 = 1/Z0, where
Z0 and β0 are wall boundary impedance and admittance,
respectively. They are complex number. K = ωR/c0 refers
to the dimensionless frequency, R is the radius of the
waveguide. By assuming the solution

φmn(r, θ) =
Jm(γmnr)
Jm(γmn)

{
cos(mθ)
sin(mθ), (4)

we obtain the dispersion equation for the eigenvalues

γmn
J′m(γmn)
Jm(γmn)

= Y. (5)

Equation (5) has infinitely complex solutions γ. It
is difficult to solve it without missing solutions. We use
the method developed in Ref. [22] which can export all
(M × I, where M and I refer to the truncation numbers
for indice m and i, respectively, see below) eigenvalues

and eigenfunctions at a time without iteration and missing
solutions. We expand the eigenfunctions φm,n in WIBC in
terms of the eigenfunctions ψm,i of an infinite waveguides
with rigid boundary conditions ∂ψmi/∂r = 0,

φn =

I∑
i=0

cn,iψi(r, θ) = ψT c, (6)

where I is the truncation of the expansion in radial
direction. For simplicity, we have dropped in Eq. (6) the
circumferential index m because of non-coupling in this
direction in this section, i.e., we consider only the problem
in radial direction. By projecting the Eq. (1) over the base
ψi, using the boundary condition (3), we obtain a matrix
eigenvalue problem[22]

Hcn = γ2
ncn, where,H = H0 + jKβ0H1, (7)

where H0 and H1 are real and symmetric matrices
(Hermitian). H0 is a diagonal matrix, its elements in
the main diagonal are the eigenvalues of rigid modes
α2

n. H1 = cscs
T , where “T ” refers to transpose, cs is a

column vector, its elements are ψi(r = 1). Using Eq. (7),
the eigenvalue problem in a waveguide with impedance
boundary conditions may be interpreted, by analogy to the
resonance in an open quantum system, as a close system,
i.e., the rigid waveguide represented by matrix H0 opened to
or interacted with an environment, i.e., here represented by
matrix H1. The Kβ0 may be interpreted as coupling strength
between the close system and the environment. For each m,
H1 is a rank 1 matrix, its eigenvalue and eigenvector are

H1cs = cs
T cscs, (8)

where cs
T cs is the eigenvalue. It needs to stress that although

H1 analogy to the environment, i.e., one open channel in
open quantum system, however, its elements are the rigid
eigenfunctions at the wall, therefore it represent a close
environment, the rigid boundary wall of the waveguide.

3 Branch points and Exceptional
points

The dispersion Eq.(5) exist infinite double roots
corresponding to

γmn
J′m(γmn)
Jm(γmn)

∣∣∣∣
γmn=γBP

= − jKβBP, (9)

∂

∂γmn

(
γmn

J′m(γmn)
Jm(γmn)

) ∣∣∣∣
γmn=γBP

= 0, (10)

In the vicinity of the double eigenvalues, the eigenvalues,
which have no power series expansion, are expressed
approximately to the lowest order as

γn − γBP ≈ −

√
2∂ f /∂β0

∂2 f /∂γ2
n

√
β0 − βBP, (11)

where we have assumed that the dispersion equation (5)
has no triple or higher order eigenvalues, βBP refers to the
admittance at which the double eigenvalues occur and the
function f is

f (γmn, β0) = γmn
J′m(γmn)
Jm(γmn)

+ jKβ0. (12)
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Equation (11) shows clearly that βBP are square root branch
points in the complex value admittance plane. Only when the
admittance is spring-like, i.e., =m(β0) > 0 ( convention e jωt

is used), there exist branch pints.
The physical reality of square root branch point

behaviour has been experimentally observed by Dembowski
et al[23] in a microwave cavity with dissipation, recently.
This physical reality can also be proved in waveguides with
impedance boundary conditions as proposed in Ref. [6].
At the branch points, not only the eigenvalues of a pair of
neighbour modes, but also the corresponding eigenfunctions
coalesce, the left and right eigenfunctions of the coalescent
modes are orthogonal (self-orthogonality)[6].

The points in a complex plane at which both eigenvalues
and the corresponding eigenfunctions coalesce is called
exceptional points (EPs). EPs should not be confused with a
degeneracies, as mentioned above for the surface modes of
+|m| and −|m|, at which the corresponding eigenfunctions are
still orthogonal. Recently, EPs have attracted much attention.
The important properties of EPs have been uncovered by
Heiss[24, 25, 27, 26], Rotter[28], and Berry[29] for physical
systems with dissipation or non-Hermitian system. EPs
have been found in different systems, such as, laser-induced
ionization states of atoms [30], electronic circuits [31],
atoms in cross magnetic and electric fields [32], a chaotic
optical microcavity[33], and PT-symmetric waveguides[34].
The effects of EPs in acoustics have been developed recently
by Bi and Pangneux[6] and Xiong et al[35].

There are an infinite number of EPs in the complex
admittance plane for each circumferenial index m[6]. The
first 10 EPs when m = 0 are illustrated in the upper panel of
Fig. 2. The EPs separate the complex admittance plane into
two regions : in the lower region, there exist only guided
modes, whereas in the upper region, there exist guided
modes and one surface mode (for each m). The surface
modes exist only when the admittance is spring-like, i.e.,
=m(β0) > 0 (convention e jωt is used).

4 Resonance trapping near an EP
We first consider the resonance trapping near one EP,

e.g., the first EP (βEP = 0.099346 + 0.042653 j) in the
upper panel of Fig. (2). The eigenvalue trajectories in the
vicinity of the first EP is shown in the lower panel of Fig. 2
as a function of =m(β0), when <e(β0) = 0.09935 is fixed.
The eigenfunctions at some selected β0 are also plotted.
As =m(β0) increase, the imaginary parts of the eigenvalues
of mode n = 0 and those of mode n = 1 increase until β0
approaches the EP, where the eigenvalues form an avoided
crossing and the eigenfunctions mix strongly. With a further
increase of =m(β0), the imaginary part of mode n = 1
continue to increase to turn to be a localised mode which is
localise near the waveguide wall, while the imaginary part of
mode n = 0 decreases and turn to a mode which resembles
mode n = 1 with a small imaginary part. This process is very
similar to the resonance trapping in open quantum systems.
However, because the environment is close, the mode with
larger imaginary part which aligns with the environment is
localised near the wall to form a quasi-surface mode.

Here we stress the necessary of EPs for the resonance
trapping, which has been overlooked in the observations of
resonance trapping in the literature[21]. This is more clear
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Figure 2 – Upper panel panel : Distribution of the first 10
EPs in the complex admittance plane, when m = 0.

Lower panel : Eigenvalue trajectories passing near the first
EP as a function of =m(β0).<e(β0) = 0.09935 > <e(βEP).
=m(β0) = 0 − 0.05. ‘◦’, =m(β0) = 0 ; ‘�’, =m(β0) = 0.05 ;

and ‘∗’ refers to near =m(βEP). m = 0.

if we consider the impedance boundary is mass-like, or the
coupling strength is in form Kβ0 = K(<e(β0) − j|=m(β0)|),
in which EPs do not exist, resonance trapping and localised
modes do not exist either.

5 Resonance trapping as a global
behaviour

When the K|β0| is small, |β0| � |βEP|, the presence of
impedance at the wall is only a perturbation of the rigid
waveguide. As |β0| increase from 0, the imaginary parts of
the eigenvalues increase from the eigenvalues of rigid modes
(modes in a waveguide with boundary condition β0 = 0) and
the real parts of the eigenvalues shift to these of soft modes
(modes in a waveguide with impedance Z0 = 0) as shown in
Fig. 3.

On the other hand, as K=m(β0) � K<e(β0) > =m(βEP),
H = H0 + jKβ0H1 ≈ jKβ0H1 = jKβ0cscs

T . Therefore, Eq.
(7) is rewritten as

Hcs ≈ jKβ0H1cs = jKβ0cs
T cscs = γ2

scs. (13)

It means that the only eigenvalue is

γs =
√

jK[<e(β0) + j=m(β0)]csT cs (14)
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Figure 3 – Eigenvalue trajectories passing near the first EP
as a function of |β0|. arg(β0) = atan(0.042653/0.099347).

|β0| = 0 − 100/30. γ1 = 3.4488 + 0.8076 j,
γ2 = 2.7219 + 0.80957 j, γEP = 3.0285 + 1.2467 j, m = 0.

Inset, the eigenfunctions along r corresponding to γ1, γ2 and
γEP, respectively.

= j
√

K=m(β0)csT cs

√
1 − j

<e(β0)
=m(β0)

≈
<e(β0)

2

√
KcsT cs

=m(β0)
+ j

√
KcsT cs=m(β0).

The eigenfunction is

φs ∝ |
Jm(γsr)
Jm(γs)

| ∝
e
√

KcsT cs=m(β0)(1−r)

√
r

. (15)

It represents a quasi-surface mode near the wall, decay
exponentially away from the wall, produced by the presence
of impedance wall, when =m(β0) > 0, i.e. spring-like
impedance. Its eigenvalue has very large imaginary part√

KcsT cs=m(β0). It is evident from Eq. (14) that when
=m(β0) < 0, modes with very large imaginary part will not
be possible when |=m(β0)| continually increase. Except of
the surface mode φs (eigenvector cs), matrix H has another
I−1 eigenvalues γn and eigenvectors cn, n , s, where I refers
to the truncation of the expansion (6). The I eigenvectors are
bi-orthogonal, e.g. cs

T cn = 0, n , s. Therefore, when n , s
and using Eq (8)

Hcn = H0cn + jKβ0H1cn ≈ H0cn = α2
ncn, (16)

where we have used the orthogoal relation cs
T cn = 0

(n , s). Eq (16) means that when we increase K=m(β0), i.e.,
K=m(β0) � K<e(β0) > =m(βEP), except for the surface
mode, with very large imaginary part of eigenvalue, all the
other modes return to be the rigid modes of the waveguides.
This surprising behavior, called ‘resonance trapping’, has
also been found in an open microwave cavity[21]. In order
to distinguish from the resonance trapping near an EP, we
call it global resonance trapping.

The above analytical analysis can be shown, by
an numerical example in Fig. 3 in which we plot the
eigenvalue trajectories as a function of |β0| when the
phase arg(β0) = atan(0.042653/0.099347). This phase
corresponds to the phase of the first EP βEP. In the inset,
we plot the eigenfunctions along r for different γ (|β0|). It is

clearly to show that with increasing the |β0|, the imaginary
part of the eigenvalue increases from zero to that of γ1, then
reach the maximum γEP when β0 = βEP. The eigenfunction
at wall increases and also reach the maximum, it means that
sound field is pushed towards to the wall which is easier to
be absorbed. With a further increase of |β0|, the imaginary
part of the eigenvalue decreases, the eigenfunction at wall
decease, which means that sound field is pushed away from
the wall which is more difficult to be absorbed.

It needs to stress that the global resonance trapping occur
only when the admittance is spring-like, i.e., =m(β0) > 0
( convention e jωt is used). The necessary conditions : the
admittance is spring-like, i.e., =m(β0) > 0 for the exist of
EPs, localisation modes, and the global resonance trapping
suggest the essential roles of EPs for the presence of
resonance trappings.

6 Conclusion
We have studied an analogy of resonance trapping

in open quantum to modes in an acoustic close system
- a Waveguide with Impedance (admittance) Boundary
Conditions (WIBC). By projecting the eigenvalue problem
of the WIBC onto the corresponding rigid mode basis, we
obtain an eigenvalue problem of matrix H = H0 + jKβ0H1.
The mode behaviour of the WIBC may be interpreted
as interacting between the modes of corresponding rigid
waveguide with an environment described by H1, and
the admittance plays the roles of coupling strength. With
increasing the imaginary part of Kβ0 (coupling strength), one
mode align with the wall of the waveguide (the environment
represented by H1) and become localization, while the
imaginary parts of eigenvalues of the remaining modes first
increase but finally decrease again and return nearly to be
rigid modes. We show that the exists of (Exceptional Points)
EPs are the essential ingredients for the occurs of resonance
trapping. Our analogy provides a new insight into resonance
trapping and provide a new point of view for understanding
the mode behaviours in waveguides.
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scatterings in waveguides with impedance boundary
conditions, J. Acoust. Soc. Am. 139, 764 (2016).

CFA 2016 / VISHNO11-15 avril 2016, Le Mans

2596


