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In nondestructive evaluation, most ultrasonic imaging methods are based on deterministic approaches where the
ultrasound energy is focused in the propagation medium to identify a reflector. Several focusing strategies have
been tested, such as time-reversal mirrors, beamforming algorithms, or a combination of both such as the CAPON
and MUSIC algorithms. These methods are robust to the noise level. However, they suffer inherent weaknesses
that limit the range of possible applications. For example, as sons as the travelling paths of ultrasound cannot
be identified accurately, artefacts appear in the images. Typically, this happens when reflections and/or mode
conversions occur in the medium. In multiple scattering media, such methods can therefore not be used. Moreover,
their imaging resolution is limited to objects which size is of the order of the wavelength. We introduce an imaging
method where measured data are reconstructed thanks to a numerical model. The approach consists in describing
the medium as an ensemble of elastic and geometric parameters, and to infer these parameters via efficient inversion
strategies. This approach allows super-resolution imaging capabilities. Numerical and experimental application
are presented, including the imaging of defects with guided waves in plates, and the imaging of cracks in a multiple

scattering medium (concrete).

1 Introduction

Nondestructive testing methods (NDT) aim at detecting
and characterizing structural defects so as to assess the as-
sociated level of danger for the structure. In this matter be-
ing able to image and finely identify the geometry of defects
is crucial. Ultrasound-based techniques consists in focusing
the ultrasonic energy in the medium in order to identify an
anomaly. The first generation of transducers had limited fo-
cusing capacity because their aperture was fixed geometri-
cally during the conception. The next generation of transduc-
ers introduced ultrasonic phased arrays that allowed dynamic
focusing of the energy, either in transmission with appropri-
ate time delays on each channel, or in reception with imaging
algorithms [1].

Current imaging algorithms generally combine different
focusing strategies in both transmission and reception. The
majority of these algorithms convert the different phase shifts
of the signals into waves travel times, which can be mapped
into an echographic image via various beam-forming tech-
niques. The most common examples of such algorithms are
delay-and-sum methods in time or frequency domain [1],
time-reversal approaches [2], or a combination of both known
as super-resolution algorithms such as time-reversal MUSIC
imaging [3].

A common feature of these methods is that they all rely
on the ability to associate a phase shift in the signal with
a travel path in the material. This essential step is not al-
ways possible, for example when a propagation time corre-
sponds to several paths: in steel longitudinal waves travel
about twice the distance of shear waves in the same time. In
that case images contain artefacts that may lead to a wrong
interpretation of the defect. It is even worse in multiple scat-
tering media (e.g. concrete) where defects cannot even be
detected. Another weakness of such methods is their inabil-
ity to produce a fine description of the defect geometry in the
presence of acoustic shadowing or when parts of the defect
scatter significantly more energy than others, which is typical
when imaging cracks for example.

Using numerical models to minimize a cost function be-
tween actual and synthetic data has been a common imag-
ing strategy in Earth Sciences for the last 30 years, and is
known as the Full waveform inversion [4]. However, sur-
prisingly in NDT such methods have remained marginal de-
spite the high computing capacities currently available. The
full waveform inversion was first introduced in the context of
NDT with bulk waves in 2004 under the name of topological
gradient [5]. More recently, it was also applied to ultrasonic
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guided wave imaging [6]. Because such methods rely on the
linearization of the problem, they cannot account for multi-
ple scattering, and their resolution capability is limited to the
diffraction limit, i.e. the half wavelength. Moreover, as for
any gradient descent-like method, prior knowledge about the
topology of the medium is required to ensure convergence.

In this paper, the same type of cost function is minimized,
but the inversion philosophy is different in the sense that the
imaged zone is defined with a set of parameters that are to be
inferred. The obvious assumption for this approach to work
is that actual data can be modeled faithfully, in which case
if the output data of the model fits the measurements, then
the parameters of the model describe the physics of the prob-
lem adequately, including elastic and geometric properties of
the material and/or those of the defects. There are 2 method-
ological difficulties to this strategy. First, it is necessary to
identify the relevant parameters and cost function for the in-
version process. Second, efficient forward modeling and in-
version procedure are required for acceptable computational
times. Through various numerical and experimental exam-
ples, we demonstrate that this approach leads to imaging ca-
pabilities with unprecedented resolution in both 2D and 3D.
Examples include super-resolution imaging of corrosion de-
fects in an elastic waveguide, as well as the reconstruction of
cracks in concrete.

2 Model-based imaging procedure

Consider the elastic field resulting from the interaction of
an ultrasonic wave with an anomaly, e.g. a defect. The con-
figuration is not limited to any particular situation: it may
correspond to a guided wave problem, a bulk wave problem,
a diffuse wave problem or any other scattering problem. We
assume that some relevant data about the scattered field can
be identified, such as a measurement of the phase and/or am-
plitude of the ultrasonic waveforms. We also assume that the
physics of the problem can be modeled faithfully, for exam-
ple via a numerical model. The basis of the approach is to
build a cost function based on the error, y, between actual
and synthetic data. Let us introduce X, a variable that con-
tains the parameters in the model.

X = {p1, P2, it} (1)

where p,, € P,, the search space associated with parame-
ter m. M is the number of parameters. For example, since
the aim is to produce an image of some inspected domain,
the image pixels can be defined as blocks of input param-
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eters to the model. M depends on prior knowledge about
the problem. For example, assume the geometry of the do-
main and its elastic constants are known a priori, then the
defect geometry can be reconstructed by finding the “empty”
pixels. Obviously, more complicated configurations will ne-
cessitate more model parameters for an adequate representa-
tion. Testing all combinations of parameters via a grid search
may require a prohibitive number of forward modeling exe-
cutions (even with efficient models), and the solution would
be intractable using current computing technology. Next, we
describe 2 inversion strategies adapted to multi-parametric
problems: a linear and a Bayesian approach.

2.1 Bayesian inversion method

When the solution to the inverse problem depends on a
nonlinear sensitivity kernel, the cost function may contain
many local minima. In that case linear inversion methods fail
to converge unless prior knowledge of the model allows the
inversion to be started with a first guess close to the global
minimum. A significant advantage of nonlinear approaches
is that convergence is ensured regardless the first guess. They
also provide a more accurate estimate of the solution and a
quantitative metric to its confidence, the trade-off being a
much slower convergence rate. In this section we describe
a Bayesian inversion method.

Given a set of measured data, each parameter has its own
density probability, P(X]|data), also known as the posterior
distribution. If known, the posterior distribution of the model
parameters given the data is statistically very valuable for
NDT. The mean of the posterior distribution indicates the
most likely parameters with regard to those data (i.e. those
that minimize the error between actual and synthetic data),
and the spreading of the posterior distribution indicates a
confidence in those parameters. In practice, the posterior
distribution is generally too difficult to be estimated directly
from the data. However, thanks to Bayes’ theorem it is pro-
portional to the probability of the data given some model,
known as the likelihood P(data|X). This property is exploited
by Markov-Chain Monte Carlo (MCMC) methods to esti-
mate the posterior distribution [7]. MCMC methods are based
on stochastic sampling of the parameters space via a random
walk that is designed to converge towards the posterior dis-
tribution. Each sample is attributed a likelihood based on a
likelihood function that accounts for measurement errors in
the data. Assuming that experimental data are measured with
uncorrelated, random errors that follow a normal distribution,
then a likelihood function suitable for most data fitting prob-
lems is a zero-mean Gaussian function:

XZ(X))
202 |’

P(data|X) = exp (- )

The variance of this Gaussian, o2, is determined from an es-
timate of the measurement error (e.g. due to noise level or
any other source of uncertainty). A classical error metric for
X is the I, norm between actual data and the output of the
model.

For the present problem the Metropolis-Hastings algo-
rithm (a simplified version of the MCMC algorithm) is im-
plemented. In practice it is initialized with a solution X® =
(P}, p3 .., 3 }7, and then iterates via the following steps:

1) Based on the previously accepted solution, X™~!, define a
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candidate solution X by randomly altering the parameters
of X" 1 such that

xand = X1 4 £ (AX), A3)
where f is a function that randomly samples a candidate in
AX = {Apl,...,ApNj}T, the step size in the Markov chain.
Ap; is a fraction of the search space associated with parame-
ter p;.
2) Use the forward model to evaluate output data associated
with the candidate and estimate its likelihood P(datalX) with
Eq. (2).
3) If the candidate is more likely than the previous accepted
solution, then it is accepted, otherwise it is accepted with

e cand
probability %: sample a random number « between

0 and 1 from a uniform distribution and accept the candidate
P(data|X¢"d)

if
1L, ;
[ P(datalX™)

MCMC methods are know to have a slow convergence
rate. In this matter, though, they remain amongst the most
efficient methods to deal with multi-dimensional non-linear
problems. For the sake of comparison, assuming a 5 dimen-
sions problem, The Metropolis-Hastings algorithm merely
requires between 5000 and 10000 iterations to converge, while
a brut-force exhaustive search of the parameter space requires
to test billions of combinations, thus making the solution in-
tractable. For a more detailed description of the Metropolis-
Hastings algorithm and its use for NDT imaging purposes,
the reader is invited to refer to [8] and [9].

a < min

“4)

2.2 Linear least-squares inversion method

When the scattering problem is well constrained, it may
be possible to build a cost function with very few local min-
ima, which allows linear approaches to be used for solving
the inverse problem. Linear inversion methods are known
to have a fast convergence rate provided local minima can
be avoided, otherwise convergence is uncertain. The linear
problem can be written in a general formulation:

d = mX, (5)
where d represents the observed data, and m some model that
describes the physics of the problem. If the problem can be
linearized, it is possible to build a cost function between the
data and the model output such that [11]

X*(X) = [ImX = dlfj, + X - XP|. (©)
Note that this cost function depends on 2 error metrics, namely:
- the I, norm between the output of the model, mX, and ac-
tual data, d,
- the I, norm between prior knowledge, XP', and the model
parameters, X.
Subscripts D and C stand for weighting coefficients C]‘)1 and
Cal, i.e. the covariance matrices of the data and the param-
eters, respectively. The former accounts for measurement
errors and thus depends on the quality of experimental data,
while the latter corresponds to the error between parameters
and prior knowledge. It is possible to tune these matrices so
as to select which has more influence on the final solution,
for example in the way reported in [10]. On can show that
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the posterior distribution of the parameters are linked to the
prior distribution via the recursive relationship:
X" = X"+ (m"Cp'm + Cy)m"Cp! (d -mX™)  (7)

where parameters in X", estimated at iteration n, are used as
prior knowledge to determine the posterior estimation X™+!
until the value of y reaches a satisfyingly low value.

3 Examples

3.1 Imaging defects in elastic waveguides

This section concerns the imaging of complex, sub-wavelength

defects in a plate using Lamb waves. This is a very challeng-
ing problem, yet with high stakes in many industrial appli-
cations, such as aerospace, pipe and transportation. Difficul-
ties come mainly from the nature of guided wave propaga-
tion, which is multimodal and dispersive, thus adding to the
difficulty of interpreting signals. Each mode has a specific
scattering directivity pattern that depends on many parame-
ters: frequency, defect geometry... Thanks to the complete-
ness of the guided wave basis [12], there is a 1:1 relation-
ship between the geometry of the defect and the directivity
of scattered modes amplitude around the defect. Therefore
for the inverse problem to be well-posed, the full scattered
field of all propagating modes should be measured at least at
one frequency. In practice, this is difficult because at least 3
fundamental modes exist in 3D, and also because generally
only the back scattered field can be measured. However, this
problem can be tackled by multiplying sources and/or fre-
quencies when only part of the scattered field is available for
the inversion [8].

The first example is a classical industrial problem, i.e. the
characterization of a corrosion defect. An example of such
defect is given in figure 2-a, which shows the cartography
of its geometry in the form of thickness loss versus position
on the plate, which was obtained from a laser scan on a cor-
roded area. The defect has a characteristic dimension of 20
mm. The plate is made of Steel (Young’s modulus E = 210
Gpa, Poisson’s ratio v = 0.3), has a thickness of 5 mm and
the frequency of inspection is 150 kHz. At this frequency-
thickness value, the wavelength of the incident mode, S, is
35 mm. Note the typical, sharp corrosion pit on top of a
more extended corroded area, which makes this type of de-
fect very difficult to characterize remotely with guided wave
inspection. The maximum depth of the defect, which is the
most critical parameter, can generally not be determined and
on-site interventions for an eventual repair or replacement of
the corroded structure are decided with empirical criteria. It
is therefore essential to be able to provide an accurate esti-
mate of the maximum depth of the defect.

In this example, the scan of the defect is available but not
the corresponding experimental data. These were simulated
using the defect geometry as input parameters to an efficient
finite element (FE) model [13], and by calculating the asso-
ciated scattered field. Gaussian white noise was added to the
scattered field in order to reproduce actual measurement con-
ditions with a 25 dB signal-to-noise ratio. Modeling is per-
formed in the frequency domain at 150 kHz in a steel plate
of thickness 5 mm. The resulting scattering pattern of the 3
propagating modes, S = {(S0(6), S Hy(6), Ap(0)}, is shown in
figure 1. Here 6 is the angular coordinate around the defect.
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Assuming the full scattering pattern of the 3 modes is
available for inversion, the cost function to minimize is de-
fined by

X X) =1S06) = S @I + IS Ho(8) — S Hy(O)|I*+
(A0 (6) — AyOIF  (8)

where S = {S((0), Ao(0), S Hy(6)} denotes the scattering pat-
tern of the 3 fundamental modes in the model. This cost
function has many local minima due to the complexity of the
guided wave problem. Hence the Bayesian method described
in section 2.1 is preferred here. The parameters in variable
X are a set of 20 control points which coordinates, [X, Y, Z],
define the test parameters of the inversion procedure. A pro-
file of the candidate defect is then generated with a 2D spline
interpolation of the control points over a 54 x 54 pixels map.
The pixel size of the map is 1x1 mm? so that it matches that
in the laser-scans of the defects.

a) b) )
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Figure 1: Scattering pattern of the 3 propagating modes: a)
S0, b) SHy and ¢) Ay when the S mode is incident on the
corrosion defect represented in figure 2-a at 150 kHz in a
Steel plate of thickness 5 mm. the black line represents
simulated experimental data with added white noise of level
25 dB SNR. The pink line is the scattered field from the
estimated defect geometry obtained with the Bayesian
inversion procedure.

Figure 2-b shows the 3D geometry of the defect esti-
mated from the posterior distribution of the MCMC algo-
rithm. Figure 2-c shows the cross section of the 2 profiles
along the [(X=0;Y=0);(X=15;Y=15)] map diagonal, as well
as the standard deviation of the solution. There is a very
good agreement between the true and estimated defect pro-
files. The confidence in the solution is also very good. For
comparison purpose, conventional imaging with the total fo-
cusing method (TFM) is also shown in figure 2-d, where only
a spot is visible. In the TFM image the defect geometry can-
not be identified and neither can the depth of the defect be-
cause this is a 2D image. Interpretation of the image, includ-
ing the danger associated with the defect, must be made with
empirical means. Such difficulties are solved thanks to the
Bayesian imaging approach.

In the next example, imaging is applied to experimental
data obtained from an approximately circular flat-bottomed
cavity manually machined into a 3 mm thick aluminium plate.
In order to avoid unwanted reflections from the edges to in-
teract with the scattered wave, the dimensions of the plate are
2mx2m (figure 3-a). The depth of the cavity was measured
to range from 0.5 to 1 mm and the diameter was 13 + Imm
(see photo in figure 3-c).

For data acquisition, Electromagnetic Acoustic Transduc-
ers (EMAT) connected to a dedicated amplifier were used
and controlled with a Matlab interface. The EM AT are specif-
ically designed for the generation and detection of the S
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Figure 2: 3D view of a) the true and b) estimated defect
with the Bayesian imaging method. c) cross-section of the
true (thick solid line) and estimated (thick dashed line)
along the [(X=0;Y=0);(X=15;Y=15)] map diagonal, with
the standard deviation (light dashed line) d) Conventional
imaging using the total focusing method. The colorbar
indicates the image dynamic in dB relative to the pixels
peak intensity.
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Figure 3: a) Experimental setup of the guided wave
experiment in a 3mm aluminium plate; b) Measured
scattering pattern for the Sy mode; c) photography of the
defect in the plate; d) estimated defect profile and e) TFM
image of the defect.

Lamb mode and exhibit around 30 dB greater sensitivity to
this mode than to Ay and S Hy modes. It was not possible to
measure the amplitude of the other two modes, because ap-
propriate sensors were not available. The transmitted wave
is a 3 cycle Gaussian-windowed sinusoidal wave of central
frequency 200 kHz. The transmitting EMAT was located 55
cm away from the centre of the defect so that the wavefront
of the incident mode can be considered plane. The receiv-
ing EMAT was located in the far field of the defect, 45 cm
away from its centre, and moved by hand at positions rang-
ing from -110° to +110° of the incident direction axis, with
an increment of 5°. The measured signals were then band-
passed filtered and Fourier transformed so that the amplitude
of the scattered wave could be evaluated at the central fre-
quency. The resulting #-dependent amplitude of the scattered
S Lamb mode has a SNR of 7 dB, and is plotted in figure
3-b.

In the previous example, no prior knowledge was assumed
about the defect, because the full scattered fields of the 3
modes were used for inversion. However, only part of the
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scattered Sy mode amplitude can be measured in the present
case. To compensate for this lack of data, here prior knowl-
edge is assumed about the hole depth, i.e. it is less than 2
mm (i.e. less than 2/3 of the plate thickness). Because the ge-
ometry of the hole is flat-bottomed, contrary to the previous
section where the distribution of control points was random,
here 20 equally spaced control points are defined on a cir-
cle, the radius of which is also a parameter of the inversion
process. The Z coordinate of control points is a set of pa-
rameter, so that the model may account for depth variations
at the contour of the hole. Moreover, to account for the non-
perfectly flat bottom, additional control points are considered
inside the circle. The estimated profile is shown in figure 3-
d. Its diameter is 12.5 mm and its depth varies between 0.2
mm and 1.2 mm. This is consistent with observations made
on the true defect and overall the reconstruction of the defect
is excellent considering current alternative imaging methods.
The scattering pattern from the estimated defect is shown in
figure 3-b. For comparison, the TFM image of this defect is
plotted in figure 3-e. As expected, since the defect’s char-
acteristic dimension is smaller than half the incident wave-
length, the TFM reaches the limit of its focusing capability
and thus only a large spot is visible. Moreover, as for the
previous defect, no information about the depth of the hole is
available.

3.2 Imaging defects in multiple scattering me-
dia

In this section, we apply the parametric imaging method
to multiple scattering media. In a multiple scattering medium,
coda waves propagate along complex trajectories, each can
be assimilated to a random-walk between scatters. The su-
perposition of coda waves arriving at the sensor is recorded
as the coda signal, which temporal waveform is a determin-
istic representation of the inner structure of the propagation
medium. Although coda signals have noisy appearance, they
do not fluctuate randomly like noise. Instead, they remain
identical unless one or several changes occur in the medium,
for instance a reflector or a local change of velocity. The
local change(s) modify the propagation trajectory of coda
waves, which translates into modifications of the temporal
waveform in the coda signals. The severity of the structural
change is thus evaluated by its ability of deviating the di-
rection of the acoustic energy, which is quantified with the
scattering cross-section y,. A large change in the structure
scatters more energy, hence results in modifications both in
the early and late coda. On the other hand, if the struc-
tural change is small, it will scatter little energy and this will
not cause significant modifications in the early coda, if any.
However, the longer the wave propagates in the medium, the
more it interacts with the change, thus accumulating more
and more modifications in the coda as compared to the wave
that propagates in the medium directly from the source to the
receiver. Hence a small change will result in modifications
in the late coda [14].

Such changes in the coda wave can be quantified by com-
puting the decorrelation between signals monitored in the
medium before and after the change. These will be denoted
hereafter by ¢o() and ¢, (#), respectively. In practice, rather
than computing the decorrelation between entire signals ¢ ()
and ¢;(¢), these signals are first time-windowed into sub-
signals of length AT, where AT is typically of the order of
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several mean free times. Estimating the waveform changes at
different times in the coda corresponds to probing the medium
at different depth, independently. The decorrelation between
signals ¢o and ¢, over a time window of length AT centered
at ¢ = ¢; is defined such that:

[ go( (r)d

DCexP(lj) =1- j—AT /2

1j+AT/2

\/ .[ J=AT/2

Consider an experimental setup where N source-receiver
pairs are used to measure the coda wave in a multiple scatter-
ing medium, and let N; be the number of time windows used
to compute the experimental decorrelations. Although cur-
rent investigations indicate that there might exist an optimal
value for the number of time windows N; and their width AT,
this is still an on-going research topic. Therefore, next these
will be set heuristically to a few mean free times, as sug-
gested in [15], in order to ensure a sufficient number of scat-

tering events in the medium and inversion stability. Hence
we introduce the following cost function :

1j+AT/2 ®)

o02dt [ di(0)dr

T ox 2
XX) = - ; ;(Dck P(t)) - DCX(tp)) . (10)

Previous studies showed that the linear inversion can be
used to solve the inverse problem [15]. However, the res-
olution of the mage is limited by the scattering mean free
path in that case. In [9] a comparison between the linear
and Bayesian inversion methods showed that image resolu-
tion can be improved using the MCMC algorithm. Hence in
this section, depending on the example either one or the other
method (or both) will be considered.

In the first example, experimental data are acquired on the
external part of a wind tunnel at ONERA made of concrete,
which we instrumented with 16 transmitters and 16 receivers
(figure 4-a). The goal was to characterize existing cracks
in the structure on the blue area. During aeronautic exper-
iments, pressure is slowly increased inside the wind tunnel,
thus also increasing structure stress. This causes the cracks to
open. Data were gathered continuously while pressure was
building up, by transmitting 2-cycles gaussian-windowed ul-
trasonic pulses with central frequency 100 kHz. The linear
inversion method was applied to decorrelations calculated
between signals received at #p = 0 and #; = 30 mn.

The forward model used in this inversion is an analyt-
ical model based on the radiative transfer equation to cal-
culate the sensitivity kernel of the decorrelations. It allows
the calculation of decorrelations induced by a small isotropic
change in a multiple scattering medium. A full description
of this model can be found in [14]. Here the inverted pa-
rameters are the scattering cross-section in each pixel of the
image.The reconstructed image is shown in figure 4-b as a
density of cracks in m?/m?. Images were also calculated in
the third dimension and revealed through-thickness cracks,
but these are not shown here because no comparison with
their actual position is possible (access inside the wind tun-
nel was not possible). Through-thickness cracks are however
consistant with observations made on-site outside the struc-
ture where pressurized air was coming out of the cracks. The
imaged cracks are in good agreement with the visible part of
actual cracks.
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a)

Average ¢ density (m%/m°)

X (m)

Figure 4: a) Experimental setup at the ONERA site: x
indicate transmitters and o indicate receivers. The red line
indicates the position of the cracks; b) Result of the linear
inversion imaging method, expressed as a density of cracks

in 2/m3.

The aim of the last example is to prove via numerical
results that cracks can be finely characterized provided the
appropriate forward model is used. To this end we consider
a multiple scattering medium with elastic properties similar
to those of concrete, i.e. Young’s modulus £ = 35 GPa and
Poisson’s ratio v = 0.25 with a density of 2300 kg/m>. The
model is a 25 mm x 25 mm squared domain, with 100 cir-
cular scatterers (¢ 10 mm) randomly included. Six sensors
acting as both transmitters and receivers are equally spaced
on a circle of radius 10 cm centered at the square diagonals.
This configuration is shown in figure 5. In order to calculate
the decorrelations induced by the appearance of cracks, a 2
cycles tone-burst with a centre frequency of 250 kHz is trans-
mitted in the absence and then in the presence of 3 cracks,
which are represented in green in figure 5.

The propagation of signals was then simulated over a 1
ms time window using a commercially available FE software
rather than the radiative transfer-based analytical model, which
is not designed for extended, anisotropic defects. Decorre-
lations were subsequently calculated in 5 time windows of
0.2 ms with no overlap, and white noise was added to sim-
ulate measurement errors on decorrelations with a SNR of
30 dB. The Bayesian inversion procedure was used to pro-
duce an image of the cracks. In this purpose, the parameters
to identify are the X and Y coordinates of the cracks cen-
ter, the cracks orientation, and the cracks dimension. Fur-
thermore, no a priori is made about the number of cracks.
Consequently, the number of cracks is also a parameter in X.
This approach is known as a transdimentional version of the
MCMC algorithm [16].

Note that in a classical multiple scattering problem, the
location of the scatterers is generally unknown. Therefore,
in practice many forward simulations are made, each with a
different realization of the disorder that keeps the same trans-
port properties of the medium. The resulting signals are av-
eraged to account for this problem. In the present case, how-
ever, this approach would be too time-consuming because
parallelization of the simulations is not available. Hence in
this last example, it is assumed that the disorder is known but
the authors are confident that averaging over several realiza-
tions of the disorder would lead to identical results [14]. The
mean of the Bayesian posterior distribution is represented in
red in figure 5, and very good accuracy is achieved for the 3
cracks.
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Figure 5: An elastic medium with elastic properties of
concrete and 100 scatters of diameter 10 mm. The 3 actual
cracks are represented in green and the cracks reconstructed
with the Bayesian imaging method are shown in red.

4 Conclusion

This paper introduced a model-based ultrasonic imaging
method that aims at minimizing the error between experi-
mental and synthetic data. A cost function is designed and
its minimization is achieved via either a Bayesian or a linear
inversion method. Once convergence is achieved, the syn-
thetic configuration of the model provides an image of the
physical inspected medium. Several numerical and exper-
imental examples were successfully investigated, including
remote imaging of corrosion defects with guided waves and
the imaging of cracks in multiple scattering media. These
results are very encouraging and future developments should
focus on the optimization of the inversion procedures, as well
as their application to other challenging cases such as the
imaging of heterogeneous, anisotropic and attenuative me-
dia.
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