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Des modéles simplifiés d’interaction fluide-structure-acoustique sont utilisés pour décrire des phénomènes
complexes comme la production de la parole humaine. Ces modelés se base sur une approximation
bidimensionnelle de l’écoulement dans la glotte ou dans le conduit vocal. Cette approximation est
raisonnable dans le cas d’un canal avec une section transversal de forme rectangulaire. Des observations de
la géométrie de la glotte et de conduit vocal lors de la production de la parole mets en évidence des formes de
section très variable et donc on peut mettre en question l’assomption bidimensionnelle. Ce papier compare
des données d’écoulement issue de simulation numérique tridimensionnelle, modélisation et expérience afin
de montrer l’effet de la forme de la section transversal sur l’écoulement. En particulier, un canal uniforme
est étudie dans laquelle une constriction est inséré. Trois constrictions sont considèré : circulaire, elliptique
et secteur circulaire.

1 Introduction
Human speech sound production is a striking

example of a pressure-driven phenomenon. In general,
speech production models rely on simplifications based
on a non-dimensional analysis of the governing Navier-
Stokes equations [2]. Accounting for typical values
of physiological, geometrical and flow characteristics
result in non-dimensional numbers which allows one
to assume the flow as incompressible [Mach number,
Ma2 � 0.1], laminar [Reynolds number Re ≈ O(103)],
quasi-steady [Strouhal number S r � 1] and quasi-
one-dimensional (quasi-1D) or two-dimensional (2D)
based on the channel’s mean aspect ratio (Ar ≥ 4)
corresponding to the width-to-height ratio of the cross-
section. Therefore, quasi-1D or 2D flow models derived
from boundary layer theory [2] have proven to be
extremely useful to capture the underlying physics and
are applied to mimic and predict ongoing phenomena
using few computational resources while allowing
experimental validation on replicas with a different
degree of complexity. Nevertheless, the assumption
of a 1D or 2D geometry implies that details of the
cross-section shape perpendicular to the streamwise flow
direction (x) are neglected. Viscous effects, which will
dominate boundary layer development and hence flow
development at low Reynolds numbers, depend on the
cross-section shape [5, 2]. A quasi-three dimensional
(quasi-3D) flow model was proposed [5, 4] as an
extension of the quasi-1D and 2D flow models. The
relevance of a quasi-3D flow model on the on onset
pressure of the fluid-structure instability driven voiced
speech production was shown since it increased (ellipse)
or decreased (circular sector) [3]. Nevertheless, a
validation of the proposed quasi-3D model is lacking.
Therefore, in the current work the quasi-3D model is
validated against experimental and numerical data.

2 Flow model
For a given fluid under the assumption of pressure-

driven, steady, laminar and incompressible flow, the
streamwise momentum equation of the governing
Navier-Stokes equation is approximated using volume
flow rate conservation dΦ/dx = 0, as [5, 4] :
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Figure 1 – Schematic front view ((y, z) plane) and area A
for circle (cl), ellipse (el) and circular sector (cs).

Spanwise extent w (y-direction) and transverse extent h
(z-direction) are indicated.

with streamwise direction x, spanwise direction y,
transverse direction z, driving pressure gradient dP/dx,
cross-sectional area A(x), local velocity u(x, y, z), volume
flow rate Φ, fluid density ρ (1.2kg/m3 for air) and
kinematic viscosity ν (1.5 × 10−5m2/s for air). The flow
model accounts for viscosity (right hand term) as well as
flow inertia (first source term at the left hand side) and
depends therefore on the area as well as on the shape of
the cross-section. It is seen that for a uniform channel,
so that dA/dx = 0 holds, 1 reduces to purely viscous
flow [5, 2]. The same way, it is seen that 1 reduces
to Euler’s equation describing Bernoulli flow when
viscosity is neglected, i.e. ν = 0 as for an ideal inviscid
flow [2].

The flow model allows to describe flow through a
uniform circular flow channel of area A0 containing a
constriction of constant length Lc and with minimum
area Ac as illustrated in Fig. 2. In general, the constricted
channel contains a convergent-divergent portion so that
the flow separates from the walls along the divergent
portion at position xs associated with channel area
As resulting in jet formation downstream from the
constricted portion. The position of flow separation in
the model is determined following an ad-hoc criterion
As = cs × Ac with cs = 1.2 in accordance with
literature [4]. The pressure downstream from the flow
separation point Pd and other flow model outcome are
assumed to be constant, i.e. Pd = 0 holds for x ≥ xs

(Fig. 2) which corresponds to the assumption of a stable
non-expanding straight jet with infinite potential core
extent x∞pc implying non-viscous flow as depicted in
Fig. 2. Imposing upstream pressure P0 allows then to
impose the total driving pressure difference ∆P = P0−Pd.

CFA 2016 / VISHNO11-15 avril 2016, Le Mans

2466



The pressure distribution P(x, t) for x0 ≤ x ≤ xs is then
expressed as a quadratic equation of volume flow rate
Φ [5, 4] :

P(x, t) = P0 −
1
2ρΦ2

(
1

A2(x,t) −
1

A2(x0)

)
+µΦ

∫ x
x0

dx
β(x,t) , i f x0 ≤ x < xs, (2)

P(x, t) = Pd, i f x ≥ xs,

with upstream pressure P0, downstream pressure Pd,
dynamic viscosity µ = ρ · ν (1.8 × 10−5Pa·s for air),
β is introduced to express the viscous contribution to
the pressure drop and depends on the cross-section
shape. For each cross-section shape, β is obtained
from the analytical solution – using separation of
variables and applying the no-slip boundary condition
of zero velocity at the channel walls– of a classical
Dirichlet problem representing the reduced streamwise
momentum equation describing viscous flow through a
uniform channel [5, 4]. Expressions of β for the shapes
shown in Fig. 1 are given in Table 1 [5]. In addition,
volume flow rate Φ is estimated as :
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Once volume flow rate Φ is known, the velocity profile
along each cross-section can be estimated as [5] :

u(y, z) = Φ
α(w, h, y, z)
β(w, A)

, (5)

with β(w, A) defined in Table 1 and α(w, h, y, z) in
Table 2. Note that geometrical parameters (w, h, A)
depend on the streamwise position x.

Lc = 2.5cm

Ac

A0

x0 x1 x2

x2 − r < xs ≤ x2 xpc x∞pc

0 1 x/Lc

As, jet Pd = 0
P0

flow
r

Lu Ld = 15cm

Figure 2 – Illustration of pressure driven flow through a
uniform circular channel (area A0 = 490mm2)

enveloping a constricted portion (area Ac = 79mm2 and
length Lc = 2.5cm and r = 0.5mm) for which the

cross-section shape can be varied (Fig. 1). A
non-expanding stable straight jet (full line) with infinite
potential core extent x∞pc and a developing jet (dashed

curved line) with finite potential core extent xpc (shaded
area) are depicted.

Tableau 1 – β as a function of length w. and area A. for
cross-section shapes depicted in Fig. 1 [5]. For
simplicity subscripts (cl, el and cs) are omitted.
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(
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)
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Tableau 2 – α as a function of spanwise length w. and

transverse length h. for cross-section shapes depicted in
Fig. 1 [5]. Subscripts (cl, el and cs) are omitted.
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)
circle

w2

4
−

(y2 + z2)
4

ellipse
1
2

w2h2

w2 + h2

(
1 −

y2

w2 −
z2

h2

)

circular
sector(a,b,c)

−
1
4

[
r2

(
1 −

cos 2θ
cosϕ

)
−

16w2ϕ2

π3 ×

∞∑
n=1,3...

(−1)
n+1

2

( r
w

) nπ
ϕ

...

...
cos(nπθ/ϕ)

n(n + 2ϕ/π)(n − 2ϕ/π)

]

In the following, an abrupt constriction for which
sharp edges are rounded (radius r in Fig. 2) is considered
so that A(x2) < 1.22 × Ac. In this case, flow separation
will occur along the rounded trailing edge of the
constriction in the range x2 − r < xs ≤ x2 with
Ac < As ≤ A(x2) < 1.22 × Ac. The lower bound
x2 − r < xs implies that the pressure within the
constriction is expected to become negative since
Ac < As [4] which would not be the case when a sharp
non-rounded trailing edge was considered for which
As = Ac. Moreover, the position of flow separation
xs along a convergent wall portion is known to shift
downstream as volume flow rate Φ, or equivalently
Reynolds number Re, decreases [4]. Consequently, the
upper bound xs ≤ x2 limits the possible downstream
shift of xs and therefore also the potential impact of
volume flow rate on the flow separation position since
As < 1.22×Ac holds regardless the imposed volume flow
rate. In addition, rounding outlet edges with such a small
radius will avoid occurrence of the so-called Coanda
effect which is not the case when a more convergent
constriction outlet is used [2]. The same way, rounding
leading edges at the inlet of the constriction aims to
reduce a potential vena contracta effect in comparison
with sharp inlet edges. Consequently, rounded edges
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allow to focus on the impact of the cross-section area
by reducing other effects related to the constriction
geometry. Finally, it is noted that with respect to
physiological flow applications round edges are more
pertinent.

In addition, an adaptive immersed boundary (IB)
method is used for the simulations [1] pressure-driven
incompressible laminar air flow through a constricted
channel as depicted in Fig. 2. IB uses a Lagrangian
description of the immersed structure, along with an
Eulerian description of the momentum, velocity, and
incompressibility of the coupled fluid-structure system.

In order to study the effect of cross-sectional shape
(circle, ellipse, elliptical sector in Fig. 1), all other
geometrical parameters are constant (Lc = 2.5cm
and Ac = 79mm2). Concrete values of geometrical
characteristics (spanwise length w., transverse length
h.) indicated in Fig. 1 for the circle, ellipse and circular
sector (with opening angle of 30◦) are summarized in
Table 3. In addition, the associated hydraulic diameter
D = 4A/P, proportional to the ratio of cross-sectional
area A and its wetted perimeter P [5], is given. From the

Tableau 3 – Overview of geometrical constriction
parameters (see Fig. 1).

circle ellipse circular sector

D [mm] 10 6.7 7.2

w [mm] 10 22.4 17.3

h [mm] 10 4.5 9.0

Ac = 79mm2, Lc = 25mm

magnitude of the hydraulic diameter D and assuming
similar Φ and Ac, the bulk Reynolds number Re = ΦD

νAc

associated with the different cross-sections can be listed
in descending order as circle, ellipse and circular sector.
Therefore, following a reasoning based on decreasing
Reynolds number, viscous effects are likely to be most
notable for the circular sector [2].

3 Experiments
In comparison with the numerical grid, the

constriction’s streamwise extrema are prolonged in
order to add screwthread (Fig. 3) so that an upstream and
downstream circular tube with area A0 = 490mm2 (or
diameter D0 = 25mm so that Lc = 1×D0) can be attached
air-tightly. Consequently, the constriction degree of the
flow channel yields again 84%. The downstream tube
has length Ld = 15cm (≈ 7 × D0) as was the case for
numerical simulations. The upstream tube on the other
hand has length Lu = 5cm (≈ 2 × D0) in the numerical
grid whereas the length of the downstream tube used in

circle (cl) ellipse (el) circular sector (cs)

y
z

× x

×
× ×

Figure 3 – Illustration of cross-sectional shapes ((y, z)
plane) as depicted in Fig. 1. Position of pressure tap P1

(•) and direction of velocity profiles along the major axis
(−→, spanwise profiles) are depicted. The

cross-sectional position (×) of longitudinal velocity
profiles is indicated as well.

Figure 4 – Setup for pressure measurements [cm].

the experiments yields Lu = 1m (≈ 50 × D0) in order to
favor laminar flow at the inlet of the constriction during
the experiments [2].

Pressure sensors (Kulite XCS-093) can be positioned
in pressure taps P0,1,2 as illustrated in Fig. 4 [4]. The
flow velocity downstream from the constriction is
measured by hot film anemometry [4]. Spanwise velocity
profiles are gathered by positioning the hot film at a
distance < 1mm downstream from the center of the
nozzle exit and displacing the hot film with a spanwise
step of 0.5mm parallel to the cross-section exit plane
across the direction depicted in Fig. 3. Longitudinal
velocity profiles in the near field downstream from
the constriction for elliptical and circular sector cross-
section shape are obtained by positioning the hot film at
a distance < 1mm downstream from the nozzle exit at the
cross-sectional position associated with the centerline
of the jet, i.e. (wcl/2, hcl/2) for circle, (wel/2, hel/2)
for ellipse and (wcs × 0.3, hcs/2) for circular sector as
illustrated in Fig. 3 [5, 4].

Figure 5 – Setup to measure the velocity field [cm].
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4 Quasi-3D model validation

4.1 Qualitative model evaluation
4.1.1 Pressure within the constriction

From 2 is seen that the pressure drop purely due
to flow inertia, i.e. without viscosity, expressed as
ratio Px/P0 between the pressure somewhere within
the uniform portion of the constriction (Px = P(x)
with x1 < x < x2 in Fig. 2) and upstream from the
constriction (P0 at x = x0) depends solely on the
geometry as Px/P0 ≈ 1− (As/Ac)2 with As ≈ 95mm2 and
Ac = 79mm2 and neglecting A0 = 490mm2. Therefore,
the ratio Px/P0 is constant within the constricted portion
and yields about 145% independently from cross-section
shape or applied volume flow rate Φ. From 2 is seen
that viscosity is expected to reduce this pressure drop. In
contrast to the term expressing flow inertia, the viscous
term depends on volume flow rate Φ, and hence bulk
Reynolds number Re, as well as on the cross-section
shape as expressed by β illustrated for circle, ellipse and
circular sector in Table 1.

This reasoning based on 2, describing the quasi-3D
flow model, fits well experimental observations of the
ratio P1/P0 (Fig. 6) between mean pressures measured
within (P1) and upstream (P0) from the constriction as
a function of Reynolds number Re. Indeed, it is seen
that the pressure drop within the constriction depends on
both the cross-section shape and Reynolds number. The
maximum pressure drop within the constriction is for
all cases (121% for circle, 119% for ellipse and 114%
for circular sector) smaller than 145%, the pressure drop
associated with purely inertial flow. This confirms that
viscosity affects the flow for all three constrictions at a
rate determined by the cross-section shape (as expressed
by β in 2). Moreover, note that the decreased magnitude
of pressure drop reduction ordered by cross-section shape
(ellipse then circular sector and then circle) is consistent
with the increase of hydraulic diameter (Del < Dcs < Dcl,
see Table 3) for all Reynolds numbers Re.

The initial increase of the pressure drop with
Reynolds numbers in the range 0 < Re < Ret, with Ret

denoting the Reynolds number associated with maximum
pressure drop (Ret ≈ 6000 for circle, Ret ≈ 7000 for
ellipse and Ret ≈ 6700 for circular sector), expresses
the increasing impact of inertial flow effects compared
to viscous flow effects expressed by Reynolds number
increase [2]. On the other hand, for Reynolds numbers
Re greater than Ret the pressure drop is seen to reduce
for all cases (cl, el and cs) indicating that an additional
pressure recovery occurs likely due to the transition
from laminar to turbulent flow which reduces the
pressure drop with about 6% compared to its maximum
value (116% for circle, 113% for ellipse and 108%
for circular sector). The range of Reynolds numbers
associated with the transitional flow regime depends on
the cross-section shape as well since pressure recovery
occurs e.g. more slowly for circle as for circular sector

since 4% pressure recovery corresponds to Ret + 8000
compared to Ret + 3000, respectively (Fig. 6). The flow
within the constriction remains laminar (Re � Ret) for
all assessed cross-section shapes as upstream pressure
P0 < 150Pa. The quasi-3D flow model is not expected
to capture tendencies observed for Reynolds numbers
associated with the transitional or turbulent flow regime
since laminar flow is assumed in the quasi-3D model.

Figure 6 – Measured ratio P1/P0 as a function of
Reynolds number Re for cross-section shapes : circle (cl

- ∗), ellipse (el - ×) and circular sector (cs - +).

4.1.2 Velocity downstream from the constriction

For the assessed flow channel (Fig. 5), the jet is
confined by the downstream tube of 15cm between 1×Lc

up to 7 × Lc which corresponds to at least 15 times the
hydraulic diameter (15 × Dcl for circle, 22 × Del for
ellipse and 21 × Dcs for circular sector). In this case, the
jet is likely to re-attach somewhere along the walls of the
downstream tube due to mixing and expansion despite
reduced flow entrainment due to confinement [2].

In order to illustrate jet development the longitudinal
velocity profile u(x) is measured along the centerline
of the jet (Fig. 2) in the range 1 < x/Lc ≤ 7 (Fig. 5)
while imposing upstream pressure P0 = 35Pa resulting
in laminar flow (Re < Ret) within the constriction for all
cases since Re ≈ 4200 for circle, Re ≈ 2800 for ellipse
and Re ≈ 3000 for circular sector. Measured longitudinal
profiles normalised by the maximum velocity observed
for the circular sector ucl

max are shown in Fig. 7.
Immediately downstream from the constriction exit the
normalised velocity depends on the flow development
within the constriction so that viscous effects – and
hence the cross-section shape – contribute to shape the
initial jet velocity which varies up to 8%. Note that the
observed decrease of initial jet velocity (uel > ucs > ucl

at x/Lc ≈ 1) corresponds to the measured pressure drop
increase ((P1/P0)el < (P1/P0)cs < (P1/P0)cl in Fig. 6).
The initial velocity is maintained within the potential
jet core of finite extent (xpc < 3 × Lc). The dynamics of
the jet in both the potential core as well as in the decay
region further downstream is observed to depend on the
velocity field at the constriction exit and therefore on
the cross-section shape. Indeed, the potential core extent
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xpc varies as a function of the cross-section shape of
the constriction since its value increases with 59% from
the ellipse to the circle (xpc/Lc = 2.6 or xpc/D = 6.5
for circle, xpc/Lc = 1.4 or xpc/D = 5.2 for ellipse and
xpc/Lc = 1.6 or xpc/D = 5.7 for circular sector). The
decay region of the ellipse exhibits velocity peaks in the
range 2 × Lc < x < 3 × Lc (or 7.5 × D < x < 11.2 × D)
indicating axis switching of the jet whereas a continuous
velocity decay is observed for the circle and circular
sector although at a different rate since the decay is more
rapid for circle than for circular sector. The observed
velocity decay towards the flow channel’s exit (x/Lc = 7)
motivates the assumption of Pd = 0 at the channel’s exit,
which is confirmed by pressure measurements near the
channel’s exit, i.e. P2 = 0 ± 3Pa for Re < Ret.

The quasi-3D model neglects jet dynamics since its
outcome is assumed constant downstream from flow
separation (x = xs in Fig. 2) corresponding to a stable
non-expanding jet of non-viscous flow with an infinite
potential core (x∞pc in Fig. 2). The model assumption of
an infinite potential core x∞pc is not realistic since the
measured potential core extent xpc is finite xpc < 3 × Lc

for all cases. Therefore, the quasi-3D flow model is not
expected to capture tendencies related to jet development
since this is omitted in the model.

Figure 7 – Normalised measured longitudinal mean
velocity u/ucl

max for P0 = 35Pa downstream from the
constriction as a function of streamwise position x/Lc

(Fig. 5) for cross-section shapes : circle (cl - ∗), ellipse
(el - ×) and circular sector (cs - +).

4.2 Quantitative validation for P0 = 35Pa
The quasi-3D laminar flow model takes into account

the cross-section shape although it does not account for
jet dynamics downstream from the constriction. The
3D flow simulations rely on a laminar flow description
as well, but are expected to capture jet expansion
mechanisms related to viscosity. Therefore, in order to
evaluate the quasi-3D model, it is of interest to compare
the model outcome with the simulated flow field as well
as with experimental observations within the laminar
flow regime (Re < Ret). In the following, a comparison
between modeled, simulated and measured flow features

is presented for upstream pressure P0 = 35Pa which is
well within the range of upstream pressures (P0 < 150Pa)
for which Re � Ret for all cross-section shapes.

Modeled (subscript m) pressure distributions Px,
simulated (subscript s) pressure distributions Px and
experimentally (subscript e) observed pressures P1
at the center of the constriction are plotted in Fig. 8
for all assessed cross-section shapes. Both modeled

Figure 8 – Illustration of modeled (full line, subscript m)
and simulated (dash-dotted line, subscript s) pressure

distribution Px = P(x) normalized by the upstream
pressure P0 = 35Pa for cross-section shapes as a

function of streamwise position x/Lc : circle (cl - top),
ellipse (el - middle) and circular sector (cs - bottom).

Measured pressures P1 at x/Lc = 0.5 (symbol, subscript
e) are also shown.

(overestimation < 3%) and simulated (underestimation
< 5%) pressures result in an accurate estimation of
the measured pressure drop (P1/P0) at the center
of the constriction (x/Lc = 0.5) for all cross-
section shapes. In addition, modeled and simulated
pressure drops P1/P0 decreases when the cross-
section is varied from ellipse to circular sector and
to circle in agreement with experimental observations
((P1/P0)el < (P1/P0)cs < (P1/P0)cl in Fig. 6). Within
the constriction (0 ≤ x/Lc ≤ 1) both the modeled and
simulated pressure distribution decreases downstream
from the constriction’s inlet (x = 0). It is observed that
the maximum difference between modeled and simulated
pressure values within the constriction decreases from
< 25% in the inlet region (0 ≤ x/Lc < 0.5) to < 10%
in the outlet region (0.5 ≤ x/Lc ≤ 1) indicating that the
quasi-3D model provides only a rough approximation
of flow phenomena near the constriction’s inlet since it
does not account for the presence of flow recirculation
zones which occur due to the severity of the constriction
(constriction degree reduces abruptly with more than
80% at x = x1 in Fig. 2) [4]. Nevertheless, the overall
agreement between modeled, simulated and measured
pressures within the constriction shows that the quasi-3D
model approach allows to maintain the model accuracy
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Figure 9 – Illustration of simulated (dash-dotted line,
subscript s) and measured (symbol, subscript e)

longitudinal velocity profile u along the centerline of the
jet normalized by the maximum of the measured profile
umeas

max as a function of streamwise position x/Lc : circle
(cl - top), ellipse (el - middle) and circular sector (cs -

bottom).

regardless of the cross-section shape (even in the case of
a severe constriction). Downstream from flow separation
near the constriction’s exit (x ≈ xs), the model outcome
is constant and does not account for vortex formation,
jet expansion and associated recirculation zones. These
phenomena affect the simulated pressure distributions
downstream from the constriction for all cross-section
shapes since negative pressures are observed along the
potential core of the simulated jet (up to x/Lc ≈ 3,
Fig. 9) whereas pressure recovery is observed as the
flow expands further downstream (downstream from
x/Lc ≈ 3, Fig. 9). Nevertheless, from Fig. 9 is seen
that both the initial jet velocity at the constriction’s
exit (< 20%) as the potential core extent (≈ 50% when
considering constant velocity) are underestimated when
comparing simulated and measured values.

Modeled, simulated and measured spanwise velocity
profiles are shown in Fig. 10. In general, it is seen that the
simulated velocity profile underestimates the measured
velocity (< 20%) but since it accounts for the growth
of the boundary layer it predicts an ideal core flow
with constant velocity enveloped by a viscous boundary
layer in agreement with experimental observations.
The modeled velocity is estimated supposing a fully
developed viscous velocity profile as a result no core
region with constant velocity is observed and the velocity
is overestimated at transverse positions within this core
region. Nevertheless, it is seen that the quasi-3D model
accounts for asymmetric boundary layer development as
observed for the circular sector.

Figure 10 – llustration of modeled (full line, subscript
m), simulated (dash-dotted line, subscript s) and

measured (symbol, subscript e) spanwise velocity
profiles u normalized by the maximum of the measured
profile umeas

max as a function of spanwise position y/w. :
circle (cl - top), ellipse (el - middle) and circular sector

(cs - bottom).

5 Conclusion
The impact of the cross-section shape is shown

experimentally for the pressure within the constriction
and for the centerline velocity of the confined jet
developing within the tube downstream from the
constriction. Quasi-1D or 2D flow models commonly
used in analytical models of fluid-structure interactions
for physiological applications omit this potential
influence of the cross-section shape. Therefore, a
quasi-3D flow model is qualitatively and quantitatively
validated against measured and simulated data. It is seen
that the quasi-3D flow model captures main flow features
within the constriction whereas downstream from the
constriction the quasi-3D model approach does not hold
since jet expansion is not accounted for.
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