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The reduction of vibrations is a thematic evolution research particularly since the emergence of innovative 
absorbers Nonlinear Energy Sink (NES). This type of absorber is characterized by a secondary mass highly 
coupled via a non-linear stiffness to the main structure that needs to be protected. This nonlinearity allows an 
irreversible energy transfer from the main structure to secondary mass. The mastery of the nonlinearity is a key 
element for obtaining optimum performance. However, in practice it is difficult to obtain a cubic stiffness 
without linear part. In this article, a novel NES design leading to the award of a cubic stiffness is presented. For 
this, conical springs have been specifically sized to provide nonlinearity. To eliminate the linear term, the 
concept of negative stiffness is implemented from two cylindrical compression springs. The system was 
designed and sized. To validate the concept, an analytical study based on the method of multiple scales is 
presented. Future developments will aim manufacturing and experimental validation of the prototype. 

1  Introduction 
Mitigation of unwanted vibration is an important issue 

in many fields of engineering. Since the emergence of 
innovative absorber Nonlinear Energy Sink (NES), more 
attentions were paid to this promising technique [1]. This 
type of absorber is characterized by a secondary mass 
highly coupled with a non-linear stiffness to a main 
structure that needs to be protected. By trigging resonances 
between related nonlinear normal modes, the nonlinearity 
allows an irreversible energy transfer from the main 
structure to secondary mass [2]. Unlike the traditional linear 
absorber Tuned Mass Damper (TMD) that needs to be 
tuned to a specific natural frequency, NES can passively 
absorb the energy over a wide range of natural frequencies 
[2-4]. Additional with a relatively small mass, make it 
particularly attractive in a wide variety of applications such 
as space and aero-structure, vibrating machinery, building 
and vehicle suspensions [4,5].  

The mastery of the nonlinearity is a key element for 
obtaining optimum performance. Depending on the type of 
nonlinearity, different kinds of NES have been proposed: 
oscillating dissipative with pure cubic stiffness [6,7], 
piecewise stiffness [8,9], rotational elements [10] and sinks 
undergoing vibro-impacts [11,12]. As far as the pure cubic 
NES, it has been shown that this configuration is most 
effective at moderate–energy regimes. Yet in practice it is 
difficult to obtain a cubic stiffness without linear part. In 
our recent approaches, the essential cubic stiffness was 
mostly realized by adopting the construction of two springs 
with no pretension [7]. Due to the self-geometric 
nonlinearity, the springs stretch in tension thus creating the 
cubic force. However, this classical type can’t effectively 
profit spring’s compression and tension performance, 
resulting in a large size vertical structure attached to the 
main system; Addition of a relatively weak nonlinear 
stiffness existing at the beginning extension, leads to the 
whole cubic term approximated to a linear term. Therefore, 
how to implement cubic stiffness elements practically is 
still an important issue to broaden the application of NES. 

In this article, a novel NES design leading to the 
award of a strongly cubic stiffness is presented. The 
structure is as follows: section 2 is devoted to conception of 
conical springs, which is specifically sized to provide 
nonlinearity; in section 3, a negative stiffness mechanism is 
implemented from two cylindrical compression springs to 
eliminate the linear term; in the next section, to validate the 
concept an analytical study based on the method of multiple 
scales is presented; Finally, concluding remarks and future 
developments are addressed.  
 

2  Conical spring design 
Owing to the self-nonlinearity, conical spring 

possesses the advantage of providing variable spring rates 
and varying natural frequencies, additional it can avoid 
buckling at large deflections. For this, two conical springs 
with a constant pitch and a constant coil diameter are 
adopted. Considering the strong nonlinearity and lower 
installation height, the shape of telescoping spring is used, 
as shown in Fig.1. 

 
Fig.1 Telescoping conical spring 

 
The dynamical behavior of conical spring with a 

constant pitch can be classified as linear and nonlinear part. 
To distinguish the two phases, three particular points are 
introduced, as shown in Fig.2: Point O corresponds to the 
spring free state; Point T means the transition point that 
starts the nonlinear behavior; Point C represents the state of 
maximal compression.  

 
Fig.2 Conical spring characteristic 

 
In the linear phase (from point O to T), the largest coil 

is free to deflect as the other coils, so the load-deflection 
relation is linear and the stiffness can be expressed as [13]: 
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In the nonlinear regime (from point T to C), the active 
coils are gradually compressed to the ground. During this 
regime, 

fn  coils are free, and 
a fn n coils are compressed 

to the ground, which means that these coils have reached 
their maximum physical deflection. By compressing 
progressively, 

fn decreases from 
an  to 0 and leads to a 

gradual increase of the spring stiffness. The load-deflection 
relation is shown as follows [13]: 
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To profit the nonlinear performance of conical 
spring, the connecting type of spring is proposed in Fig.3.  

 
Fig.3 Connecting type  

 
However, this configuration exist the problem of 

possessing piecewise stiffness of linear and nonlinear part. 
To skip the linear phase, a method of pre-compressing at 
transition point is adopted. By changing the initial original 
point, the behaviors of two conical springs can respectively 
belong to linear and nonlinear regimes simultaneously. 
Supposing the right direction of vibrating as positive, 
setting the left spring as first one and the right as second 
one, we can obtain the new load-deflection relation, as 
shown in Fig.4. By compressing progressively, the force of 
second spring increases nonlinearly, while the first 
decreases linearly. When the displacement reaches the 
value of transition point’s deflection, it returns back to the 
free length and starts to work at tension regime. Combining 
the two spring’s curves, the composed stiffness curve is 
obtained and it is obviously observed that the new curve is 
smooth and no longer piecewise as before. 

 
Fig.4 Pre-compressed characteristics   

 
To analysis the internal polynomial components, the 

method of polynomial fitting is used to obtain the new load-
deflection relation, as follows: 

2 3
1 2 3P a x a x a x                             (3) 

In this polynomial, the linear term 1a x is hardly to be 
eliminated owing to the superposition of linear and 

nonlinear part, while the square term 2
2a x is possible to 

make its value small.  
After optimizing the parameters of conical spring (the 

mean diameter D1 and D2), the new polynomial components 
is obtained and presented in Fig.5. It can be observed that 
the curve of cubic and linear term is almost closed to the 
original one, by means that the contribution of square term 
is small that can be almost neglected. 

 
Fig. 5 Polynomial components 

3  Negative stiffness mechanism 
To eliminate the proposed linear term, adding a new 

term which has the negative stiffness in the translational 
direction seems be a way forward. For this, a negative 
stiffness mechanism is implemented from two cylindrical 
compression springs, and the structure is shown in Fig.6. 

 
Fig.6 Negative stiffness mechanism 

 
Based on Taylor expansion, the force-displacement 

relationship of pre-compressing at the length of pl  is 
expressed as: 

3
32 P kl Pf u u

l l
                          (4) 

 
Superposing the force with the one of conical spring in 

the translational direction, the composed force can be 
depicted as: 

3
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m
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       (5) 

As can be seen from Eq. (5), if we set 1 2 /pa kl l , the 
equation will be left with the pure cubic term, and the 
coefficient of cubic term will increase a little larger.  

Based on the proposed methods, a small sized NES 
system providing strongly nonlinear stiffness is designed, 
and the assembly drawing is presented in Fig.6, of which 
the component parts are spherical plain bearing, linear 
guide, conical spring, linear spring and NES mass.  
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Fig.6 Cubic stiffness absorber system 

 
To make certain the conical springs work in the 

compression state, the maximum displacement of NES is 
limited at the deflection of transition point. The 
corresponded characteristic curve is presented in Fig.7. It 
shows that the stiffness in the required working range is 
pure cubic and strongly nonlinear.  

 
Fig.7 Pure cubic stiffness curve 

4  Analytical study 
To validate the concept, an analytical study of a 

harmonically excited linear oscillator (LO) strongly 
coupled to a NES is presented, as shown in Fig. 8. 

 
Fig.8 LO coupled with NES 

 
The governing equations of motion of this system are 

given by: 
2
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        The imposed harmonic displacement ex is expressed as:  
sinex G tt                                    (7) 

 By scaling parameter such as 0 ,t 2 1/ ,m m  the 
transferred equations are obtained: 
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Where the dots denote differentiation with respect to 
and the following parameters are defined: 
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New variables are introduced as follows: 
v x y ,  w x y                               (9) 

To study the response in the vicinity of the 
1:1resonance, the following complex variables are 
introduced: 

1
i te v i vv i vv ii ,   2

i te w i ww i ww ii             (10) 
Substituting Eq. (9) and Eq. (10) into Eq. (8) and 

keeping only the secular term containing I te yields the 
following slow modulated system: 
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Considering the small parameter , the method of 
multiple scales is introduced in the following form:  
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Introducing Eq. (12) into Eq. (11) and equating 
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0

1
0

22
2 2 2 1 2 2

0

: 0

3( ) 0
2 2 8

i iK
           (13) 

1 1
1 1 2 1 1

1

1
2 1 2 1 2 1

1

22
2 2 2

: ( ) 0
2 2 2

( ) ( )
2 2 2

3 (1 3 ) 0
2 8 2

i Fi

i i

iK F

            (14) 

Substituting 2
1 2( ) iN e into Eq. (13), the equation of 

slow invariant manifold (SIM) is presented as follows: 
2
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Introducing the parameters of previous cubic stiffness 
absorber of Tab.1, the structure of slow invariant manifold 
(SIM) is obtained, as shown in Fig.9. This topologic 
structure is mainly responsible for the possible occurrence 
energy pumping and it may give rise to the strongly 
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modulated response (SMR) .The detailed description can 
refer to [14]. 

Tab.1 Parameters of NES 

Physical parameters 

m1 14kg k2 6 31.68 10 /N m  

m2 0.14kg C1 4Ns/m 

k1 43 10 /N m  C2 0.4Ns/m 

Reduced parameters 

 0.01 2  0.062 

1  0.62 K 5620 

The SMR threshold 

G1c 0.045mm, G2c 0.16mm 
 

stable unstable stable

0

0

21Z

22Z

2uZ

2dZ

 
Fig.9 SIM structure   

 
Based on the Eq. (8), setting the initial condition state 

as zero and the excitation amplitude as 0.1mm, the 
numerical responses of NES and LO are obtained in Fig.10. 
A quasi-periodic regime with a slow evolution of the 
amplitudes of both oscillators is observed. For LO, the 
amplitude increases and decreases repeatedly in a regular 
fashion. For the amplitude of NES, it can be classified into 
two levels: a small one corresponding to the growth of LO 
amplitude, a large one when LO amplitude decreases. This 
alternating regime of SMR proves the jump phenomenon of 
SIM (the hypothetic “jump” between the stable branches is 
noted by arrow), and it has been demonstrated that this 
regime is rather effective for vibration mitigation [15]. 

 
Fig.10 Strongly modulated response with G=0.1mm 

As can be seen from Fig.10, the maximum amplitude 
of NES is near to 20mm, by means that this value is closed 
to the deflection of transition point and the performance of 
conical spring is well profited. Moreover, it can be 
observed that this system with strong nonlinearity could 
effetively abosrber and dissipate targeted energy uner a 
small excitation amplitude. 

5 Conclusion 
In this paper, a novel design NES of cubic stiffness 

without linear part is presented. For this, two conical 
springs were specifically sized to obtain the strong 
nonlinearity. To skip the linear phase of conical spring, a 
method of pre-compressing at the transition point was used, 
so to provide the polynomial components only with linear 
and cubic term. To eliminate the linear term, the concept of 
negative stiffness was implemented from two cylindrical 
compression springs. Based on the proposed methods, a 
small sized NES system providing strongly nonlinear 
stiffness was developed. To validate the concept, an 
analytical study based on the method of multiple scales was 
presented. The results showed that at specified excitation 
amplitude, this system could passively transfer the 
unwanted disturbance energy with the response of SMR. 
Moreover, owing to the strong nonlinearity, this type could 
effetively abosrber and dissipate targeted energy uner a 
small excitation, which makes it possible to broaden the 
NES application in vibration mitigation of fine mechanics. 
Further developments will aim manufacturing and 
experimental validation of this prototype. 
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