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A low-dimensional physically oriented model of the glottal source is discussed. The model relies on a
lumped mechano-aerodynamic scheme based on the mass-spring paradigm. The vocal folds are represented
by a mechanical resonator plus a delay line which takes into account the vertical phase differences. First, a
simple flow model based on Bernoulli’s law is assumed, and the properties of the system are discussed. The
class of models under consideration is shown to be able to reproduce a broad range of phonation styles, and
to provide interesting control properties. Secondly, an extended flow model is introduced with the aim of
reproducing realistic glottal source waveforms obtained by inverse filtering. The new flow model is based
on a general parametric nonlinear model. For this new scheme, the principal characteristics of the flow-
induced oscillations are retained, and the overall model is suited for an identification approach where real
inverse filtered glottal flow signals are to be reproduced. A data-driven identification procedure is outlined,
where the parameters of the model are tuned in order to accurately match the target waveform. A set of
inverse-filtered glottal flow wave forms with different characteristics are used to test the effectiveness of the
approach. The results demonstrate that the model can reproduce a wide range of target waveforms.

1 Introduction

A wide number of speech analysis, coding, and synthesis
techniques, are based today on the source-filter model of
speech production [1], in which the laryngeal excitation
can be reasonably considered independent of vocal tract.
The glottal source has been recognized to play an impor-
tant role with respect to the quality of the synthesis [2, 3],
and speech synthesis schemes and systems relying on ex-
tended models of the glottal excitation are now available
(e.g., [4]). In many cases, analytical models [5] are the
preferred choice. The use of physical glottal models has
been evaluated as well, although the parametric fitting to
sampled waveforms, required in many applications, has
turned out to be a extremely complex task [6].

Numerical models of the voice source production based
on the physiology of the vocal folds have been proposed
since 1968 [7]. The first attempts to simulate the flow-
induced oscillations of the vocal folds were based on a
lumped-element model made of a single spring-mass os-
cillator driven by airflow from the lungs. An essential
improvement to the one-mass model was proposed by
Ishizaka and Flanagan, with their two-mass model [8].
A wide range of variations and improvements have been
proposed since the introduction of the original spring-
mass models. However, the increase of accuracy in the
modeling has disadvantages as well, as the growth of
computational complexity and the difficulty to fit the
model to observed data, due to the large amount of pa-
rameters involved. This prevented the physical model-
ing approach from being extensively adopted in practical
applications in spite of its intrinsic potentialities, and at
today the principal motivations for physical modeling of

the voice source remain the understanding and learning
about the phonatory process.

This article describes an investigation on a class of source
models which combine physical knowledge and data-
driven parametric fitting to the aim of reproducing in-
verse filtered glottal flow waveforms. We describe a
waveform-matched mathematical model of the glottis
loosely inspired to the myoelastic-aerodynamic theory
and the lumped mass-spring paradigm. The principal dif-
ference with respect to the original one- and multi-mass
models is the oversimplification of the mechanical res-
onator and the inclusion of a parametric nonlinear com-
ponent in the mechano aerodynamic loop. The design
of this component relies on an data-driven identification
scheme which allows the model oscillation to be fitted to
a target volume velocity waveform.

The properties of a low-dimensional self-oscillating glot-
tal model are first reviewed, and the improvements intro-
duced to support the data-driven modelling approach are
described. The parametric identification of the model and
issues concerning the synthesis of voiced sounds are then
discussed. The experimental section is finally dedicated
to the fitting of different inverse filtered volume-velocity
waveforms to the model.

2 Description of the glottal model

The choice of the glottis model structure is inspired by
the lumped multi-mass paradigm and by the body-cover
wave model by Titze [9]. The body-cover model perspec-
tive looks at the vocal fold motion as a surface wave that
propagates along the body-cover from the bottom of the
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glottis to the top. We refer here to a simplified version
of the body-cover model, introduced in [10], in which
a single mass-spring system represents the entrance to
the glottis, and a transmission line is responsible for the
phase delay between the entry and exit to the glottis.
One-delayed-mass models of this kind, also explored in
[11], showed to retain the principal characteristics of flow
induced oscillation, despite its simplicity and computa-
tional efficiency. The mechanical system is described by
a mass-spring oscillator equation mẍ1+rẋ1+kx1 = Fm,
where x1 is the lateral displacement of the vocal fold at
the entrance of the glottis, m, r, and k are respectively the
mass, damping factor, and stiffness, and Fm is the force
that drives the folds. The full details of the equations de-
scribing the model can be found in [10], and we focus
here only on the design of the flow model.

The areas at entry and exit of the glottis can be respec-
tively defined as

a1(t) = 2L(x01 + x1(t)) (1a)
a2(t) = 2L(x02 + x1(t)− τ ẋ1(t)) (1b)

where L is the length of the glottis, x01 and x02 are the
rest positions of masses at entrance and exit to the glottis,
and τ = T/cf , with T being the thickness of the folds
and cf being the wave velocity on the fold surface, is the
time taken by the wave to propagate from the entrance to
the upper end of the glottis. In the discrete-time imple-
mentation of the model, the wave propagation on the fold
surface is represented by a simple delay line. Given the
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Figure 1: Simulation of the one-mass model. Upper
panel: Ug , middle panel: γx1 (solid) and x2 (dashed),
lower panel: lung pressure Pl (dot-dashed) and fold
driving pressure Pm = Fm/Sm (solid), with Sm being
the fold surface.

description of the glottis area and a driving lung pressure
Pl, there is a wide number of possible choices to write
simplified formulas for the flow. The most simple one is
derived from the stationary Bernoulli’s law and assumes

that the flow is proportional to the glottal area:

Ug =

√
2Pl

ρ
min{γa1, a2}, (2)

where γ > 1 is a term used to take into account that the
flow separation point is located at the exit of the glottis
in the case of a convergent glottis, or may move within
the glottis, as the folds assume a divergent configuration.
Figure 1 shows an example of the dynamical behavior of
the system at the oscillation onset. This model has also
shown to be able to simulate a wide range of voice qual-
ities, such as pressed, breathy and bifurcated phonation
[12].

2.1 Fitting inverse-filtered glottal flow
waveforms with the one-mass model

The simple one-mass model described in the previous
section can be improved with some extensions which per-
mit to approach the modelling of the flow waveform with
a data-driven waveform matching perspective. The struc-
tural extension consists in the definition of a more general
flow model, i.e., in place of Eq. (2), the following para-
metric function is used:

Ug = w0 ·
√

Pl min{γx1, x2}+
M∑

i=1

wiψi(x1, x2) (3)

where wi are weights to be identified, and ψi(x1, x2) are
nonlinear regressors of the input data. The regressors are
functions that can be used to combine the inputs in a non-
linear fashion. The choice of the regressors can be made
in several ways. Local models, such as gaussian functions
or any other radial basis function, are often used. This
approach leads to a model called Radial Basis Function
Network (RBFN), and is adopted here.

Given a target flow waveform obtained by standard
inverse-filtering procedures, the parameters of (part of
the) model are first adapted in a way that the area func-
tion provided by the fold displacement is coherent with
the target flow waveform. Then, the parametric model
of the flow is designed to transform the area underlying
the flow onto the actual flow waveform. The full details
of the parametric identification procedure can be found
in [10]. Here, only a brief description of the process is
given:

1 Given the flow signal, a feasible lung pressure signal
Pl(n) is derived.

2 Considered the target flow and lung pressure as driving
signals, the displacement of the fold edges are com-
puted by running the mechanical part of the model,
i.e., the fold driving pressure is computed and used
to drive the mass-spring system. In this step, the
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tuning of various parameters (i.e., the mass-spring
parameters, the fold resting position, and the fold
length) is required so to let the area function be co-
herent with the target flow.

3 Given the lung pressure and the displacement of the
fold edges as input, and the desired flow as output,
the set of parameters {w0, w1, . . . , wM} of the flow
model is identified by a LS algorithm performed on
a steady-state portion of the flow signal (in general,
a three-periods window was considered).

4 Once trained, the system is run with arbitrary control
input (within the training range), and the stability of
the oscillations is verified.

Items 1 to 3 are referred to as the analysis, or identifica-
tion, step. Item 4 is referred to as the synthesis step. Fig-
ure 2, upper panel, shows how the tuning of the parame-
ters representing the mechanical part of the model leads
to the synchronization of the fold displacements with the
flow waveform. In particular, the opening of the exit of
the glottis (x2 displacement) is synchronized with the be-
ginning of the open phase of the flow waveform, and the
closing of the entrance of the glottis (x1 displacement)
is synchronized with the beginning of the closed phase
of the flow waveform. The tuning of the parameters at
this stage is performed manually with an interactive pro-
cedure. Figure 2, mid and lower panels, shows the identi-
fication result of the flow model parameters by the LS al-
gorithm, and demonstrates how the extended flow model
is able to transform the rather crude representation of the
fold displacements into the non-trivial waveform of the
target flow.
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Figure 2: Open-loop identification result. From top to
bottom: the fold edges displacement compared to the tar-
get flow; the target flow and the reproduced flow; the tar-
get flow rate and the reproduced flow rate.

2.2 Results and discussion

Figures 3 and 4 show the details of the self-oscillation
properties of the model after training. The target flow
period (upper-left panel), the reproduced flow (lower
panel), and the comparison of the two in the frequency
domain, are shown for two voice source examples. The
comparison in the frequency domain was made using an
auditory excitation pattern representation of the physical
spectrum [13]; the auditory model transforms the physi-
cal spectrum into a pattern of specific loudness as a func-
tion of critical band rate, and has previously been found
to efficiently predict perceived differences between vowel
sounds [14]. These examples show how the system suc-
cessfully adapts the parametric flow model so as to fit
different flow shapes, while maintaining the original self
oscillatory properties. A good matching of the excitation
patterns is observed, at least in the lower part of the erb
scale.
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Figure 3: Target flow (panel a)) from a male speaker
uttering a sustained vowel ( F0 = 104 Hz). Panel
b): comparison of the excitation patterns of the tar-
get flow (dashed line) and reproduced flow (continuous
line). Panel c): self-sustained oscillation produced by the
model after training.

3 Conclusions

A vocal fold model based on a one-mass scheme and en-
hanced with a data-driven identification component, was
described. First, the properties of an oversimplified one-
mass model were explored, and it was shown how flow-
induced oscillations can be produced even without vo-
cal tract load, provided that a vertical phase delay is re-
produced with a propagation line. The resultant discrete
scheme has the advantage of simplicity and of being com-
putationally efficient. Then, the simple one-mass model
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Figure 4: The target flow (panel a)) is from a female
speaker uttering a sustained vowel (F0 = 372 Hz). Panel
b): comparison of the excitation patterns of the flow
(dashed line: target, continuous line: reproduced). Panel
c): self-sustained oscillation produced by the model after
training.

was improved with a parametric model of the flow, and a
data-driven analysis/synthesis procedure was described,
that allows the model to fit to an arbitrary target flow. The
training with respect to different flow waveforms demon-
strates the versatility of the model, and its potential to
represent a wide class of source flow signals. The advan-
tage of using a physically-based description of the vocal
folds, as we do here, is that the fitting accuracy provided
by the parametric component is coupled with physically
consistent dynamical behaviors and control properties.

For this approach to be useful for practical applications,
e.g., for speech synthesis or speech coding, some points
still require to be investigated: an algorithmic procedure
to identify the parameters with physical interpretation
is necessary and has to deal with the problem of non-
uniqueness of the solution. Moreover, analytical condi-
tions for closed-loop stability after the flow model fudge
factor parametric identification remain an open issue, and
the definition of constraints to account for during train-
ing, should be addressed.
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