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A new lumped-parameter model of human vocal folds with smooth shape derived from measurements on 
excised human larynges is presented. The mechanical equations of motion are based on previous studies, 
while the aerodynamics are solved by a new finite difference scheme. The model deals with 1-D Navier-
Stokes equations, fully coupled with a 2-DOF rigid body vibrating in the channel wall. To mimic the 
motion of real elastic vocal folds and to avoid discontinuities in the channel, the model employs smooth 
spline interpolation on both edges of the rigid body. The finite difference scheme allows to take into 
account variable flow separation point in terms of a moving boundary condition. With the help of the 
model it is possible to investigate subcritical vocal fold vibrations and to determine stability thresholds for 
various configurations. The model is also able to perform numerical simulations of supercritical vocal 
fold movement including impacts. A physical model of vocal folds with the same geometry as the 
computational one was fabricated and measured. With the flow rate given by means of a digital mass flow 
controller, the vibration was observed by videostroboscopy and the acoustic output measured by a sound 
level meter. Mainly due to simplifications in modelling of aerodynamic effects, which accompany glottal 
closure, the theoretical results show only qualitative agreement with the measured data so far. 

1 Introduction 

First lumped-parameter dynamic models of the vocal 
fold self-oscillations were developed already at the 
beginning of the seventies of the last century (Ishizaka 
and Flanagan, 1972) and remain to be widely used 
(e.g., Liljencrants 1991; Pelorson et al. 1994, Story and 
Titze 1995, de Vries et al. 1999). This is because they 
are a meaningful alternative to finite element models, 
where the modelling of flow-structure interaction is 
still very problematic and which often require 
enormous computer time. The aerodynamic forces in 
the lumped-parameter models are usually 
approximated by quasi-steady forces given by the 
Bernoulli law, and the vocal fold geometry is described 
by piecewise constant, or piecewise linear functions. 
It is widely accepted that the vocal fold geometry is 
very important in determining the stability boundaries 
and vibratory patterns of the vocal folds. This is why it 
seems useful to develop a model, which would reflect 
accurately the shape of real vocal folds while 
describing reasonably the glottal aerodynamics, and 
which would allow to study the influence of the vocal 
fold geometry and various other parameters on 
phonation. Such a model was recently developed by 
the authors on the basis of their previous studies. A 
physical model with the same geometry was fabricated 
and measured to validate the results from the 
computational one. 

2 Mathematical model 

2.1 Model of the glottis  

The vocal folds are modelled by a 2DOF rigid body 
vibrating in the channel wall (see Fig.1). Symmetrical 
oscillations are assumed and thus only one half of the 
channel is modelled.  
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Figure 1: mathematical model of the vocal fold 

The channel is considered rectangular, with uniform 
depth h. The function H(x,t) represents the time-
varying channel height. In the central part ],0[ Lx∈  it 
is determined by the shape a(x) of the vibrating body 
and by its vertical displacement w(x,t) from 
equilibrium position: 

 ),()(),( 0 txwxaHtxH −−=  (1) 

whereas at the upstream and downstream extensions 
]0,[ 0Lx −∈  and ],[ 2LLLx +∈  the channel profile 
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H(x,t) is modelled by a smooth spline interpolation. 
The variable g(t) denotes the minimum channel height, 
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The system encounters two quite different states: first 
when the glottis is open – then it is necessary to 
calculate the velocity and pressure fields u(x,t) and 
p(x,t). In this case, the excitation forces )(1 tF , )(2 tF  
are given by integration of the aerodynamic pressure 
p(x,t). On the contrary, if the glottis is closed (the vocal 
folds are in contact), no airflow is present. Here, the 
impact forces (and possibly the static air pressure) 
excite the system. 

2.2 Equations of motion  

In the mechanical equations of motion, which are 
based on the previous studies (Horáček, Švec 2002), 
the rigid body is equivalently replaced by a three-mass 
system 1m , 2m , 3m  supported by springs.  

The position of the vibrating element can be described 
by two generalized coordinates (rotation and lift): 
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where )( 11 lLww −=  and )( 12 lLww +=  denote the 
vertical displacements at the locations of 1m , 2m  
respectively. Then, from the Lagrange equations, it is 
easy to obtain the equations of motion of the system 
(see Horáček, Švec 2002) 

 0FVKVBVM =+++ &&&  (3) 

where KBM ,,  are the structural mass, damping and 
stiffness matrices (2x2). Unlike the mass distribution, it 
is not easy to determine the stiffness, and particularly 
the damping inherent in real vocal folds. This is why a 
proportional model of damping, where 

KMB 21 εε += , was chosen.  

The vector ( ))(),( 21 tFtFT =F  stands for the excitation 
forces. It contains strong time discontinuities and 
implicitly depends on the deflection vector V, since it 
is given by completely different formulas during 
contact and non-contact regimes. 
 

2.3 Aerodynamic forces 

Within this study, a quasi-1D unsteady incompressible 
viscous flow model is used. In the open-glottis regime, 
the velocity and pressure functions u(x,t) and p(x,t) are 
described by Navier-Stokes equations 
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and by the quasi-1D continuity equation for the time-
space domain ],[],0[ 20 LLLTT +−×=Ω  
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where ρ denotes the fluid density, ν the kinematic fluid 
viscosity and H(x,t) the channel height (see Fig.1, eqn. 
1). The system is equipped with initial condition, 
which is computed from the steady continuity equation 
and from the steady Bernoulli equation corrected for 
viscous losses (under assumption of fully developed 
Poiseuille flow) 
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and further with boundary conditions  
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To determine the flow separation point FSx , the 
semiempirical criterion  

 ( )
η=
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was used, g(t) denotes the minimum channel height 
(see Fig.1), η is prescribed constant. The aerodynamic 
excitation forces are given by integration of the 
aerodynamic pressure 
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where h denotes the channel depth and the parameters 
l, L1 define the positions of the two springs (see Fig.1). 
Since the mass of the rigid element was calculated 
according to the mass of the tissues in the interval 

],0[ Lx∈  (one may imagine massless membranes 
covering the rigid body), it seems reasonable to 
integrate the aerodynamic pressure in (9) just over 

],0[ Lx∈  too, instead of the entire interval 
],[ 20 LLL +− .  
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2.4 Contact forces  

During the contact of the vocal folds, the excitation 
forces are given by decomposition of the impact force 

HF , which acts at the center of the contact area, into 
the location of masses 1m  ( )lLx −= 1  and 2m  
( )lLx += 1 . The Hertz model is used to estimate the 
impact force:  

 2/3δHH kF =  (10) 
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∈
δ  stands for the 

penetration of the vocal fold through the contact plane 
and kH represents the Hertz constant, which can be 
calculated from the material properties of the vocal 
folds and from their geometry. 
During vocal folds contact, one may also take into 
account the quasistatic air pressure, which is present in 
the closed subglottal volume and which presses the 
vocal folds apart. 

2.5 Numerical solution of the coupled 
problem 

During vocal folds contact (closed-glottis phase), the 
equations (3,10) yield a system of two second-order 
ordinary differential equations. These are transformed 
into the system of four first-order ODEs, which are 
solved with 4th-order Runge-Kutta method.  
In the open-glottis regime, one has to solve the partial 
differential equations (4,5) for the fluid velocity and 
pressure. In a general two- or three-dimensional case, a 
finite volume or finite element method for the solution 
of the problem in ALE formulation (since the 
computational domain Ω is time-dependent) would be 
necessary. Within the quasi-1D approximation, 
however, it is possible to employ the finite difference 
method, where dramatically less computer time is 
needed. 
The space-time discretisation of the equations (4,5), 
stabilized by upwinding, yields an explicit 1st-order 
scheme for the solution of discrete velocity k

iu and 

pressure k
ip . Hence, at each time level, the velocity 

and pressure distribution are calculated, and the 
excitation forces (9) determined. This allows to 
proceed to the next time level with the same Runge-
Kutta method, as was already described. 
No theory regarding error bound estimation was 
developed so far. Suitable spatial step ∆  and time step 
τ , which allow efficient yet reliable computation, 
were estimated by means of numerical experiment. As 
regards the time step of the method, an adaptive 

refinement was implemented in the model to pick up 
the moment of vocal folds impact more accurately. 

2.6 Numerical values of the model 
parameters 

A fair effort was made to relate the model parameter 
values to the properties of real vocal folds. Since one 
of the innovative concepts in this model is quite a 
sophisticated modelling of the vocal fold shape (within 
the framework of 2D approximation), a special 
attention was paid to supply reliable data concerning 
the vocal fold geometry.  
The detailed information on the vocal fold shape is 
largely incomplete due to their inaccessibility and 
limited resolution of standard imaging methods such as 
CT and MRI. Berry et al. (2001) was the first to 
succeed in measuring the geometry of the inferior 
surface of the vocal folds on excised canine larynges 
using wax molds. Here we use the results of our recent 
measurements of excised human larynges in phonation 
position (Šidlof et al. 2004). Figure 2 illustrates the 
technique, which was used to gain the vocal fold shape 
near mid-membranous point. 
From Fig.2-f one may see that a pure polynomial 
regression would hardly be sufficient to model the 
vocal fold shape, or would at least require high-order 
polynomial. This is why the shape of the vocal fold 
was approximated by a piecewise defined smooth 
parabolic curve (spline), which allows to catch the big 
variations in local radius of curvature. In this case, the 
shape was approximated by function [m] 
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where L = 8.64 mm is the length of the central part. 
The other geometrical parameters (see Fig.1) were 
taken as follows: l /L = 0.315, L1 /L = 0.5, L0 /L = 0.5, 
L2 /L = 0.25, H0 = 7.12 mm (for g = 0.25 mm) and 
channel depth h = 10 mm. From the Young modulus 
E = 8 kPa and Poisson ratio µ = 0.4, the Hertz constant 
kH = 304N m-2/3 (cf. equation 10) was calculated 
according to Brepta (1974). The air density ρ 
 = 1.2 kg/m3, kinematic viscosity ν = 1.58 10-5 m2/s and 
flow separation constant 51.1 ÷=η  were considered. 
The masses m1,2,3 and the moment of inertia, necessary 
for the construction of the mass matrix M (cf. equation 
3), were calculated from the geometry. A tuning 
procedure was used to adjust the stiffness and damping 
matrices K and B in order to match the natural 
frequencies f1,  f2 and 3dB half-power bandwidths 
∆f1=23 Hz and ∆f2=29 Hz of both resonances with 
values measured on real vocal folds. 
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Figure 2:  determination of the vocal fold geometry.  
a – plaster cast of the folds which was digitized on a Wenzel LH-87 CM machine; b – 3D computer model; c, d – 

extraction of the mid-membranous coronal section; e – domain suitable for regression; f – regression curve 

3 Physical model 

A physical model of the vocal fold with the same 
geometry as the computational one was fabricated (see 
Fig.3). For the vibrating part, silicon rubber was used. 
Since the Young modulus of silicon rubber is 
considerably higher than the average stiffness of real 
vocal folds, the vibrating part was supported by two 
cantilever rubber beams instead of placing on massive 
layer. The bending stiffness of the beams was 
estimated so that it would approximately match the 
elastic properties of real vocal folds. 
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Figure 3: measurement setup and the physical model of 
the vocal fold  

The rigid parts of the model are from plexiglass to 
allow videostroboscopical measurements of the 
vibrations. 
The model of the vocal fold was mounted on a 
maquette of subglottal space, to which the airflow was 
supplied from a digital mass flow controller (see 
Fig.3). The vibrations were observed by 
videostroboscopy, and the acoustic output was 
measured by a sound level meter. 
 

2740



Forum Acusticum 2005 Budapest  Šidlof, Horáček 

4 Results 

For the data specified in paragraph 2.6, the 
mathematical model predicts critical flow velocity 

smU crit /25.2,0 = . For higher flow velocities, the 
oscillations exponentially increase until the vocal fold 
collides against the wall. Figure 4 illustrates the motion 
of the vocal fold for supercritical velocity 

smU /8.20 = - after a short transient regime, the 
vibratory cycle stabilizes and the vocal fold exhibits 
regular oscillations with impacts (highlighted) in each 
period. 
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Figure 4: results from the mathematical model – 
deflections w1(t) (top), and w2(t) (bottom) 

The model further provides plots of the glottal area and 
its derivative vs. time (Fig. 5), as well as several other 
outputs such as opening, closing and skewing 
coefficients, impact stress etc. These shall not be 
discussed in detail here, since a systematic analysis of 
the influence of all the input parameters is not subject 
of this study.  
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Figure 5: results from the mathematical model - glottal 
area (top) and its derivative (bottom) vs. time 

The mathematical model also yields the acoustic 
pressure emitted by the vocal fold. However, the 
pressure may be calculated only during the open phase 

so far – when the glottis is closed, no flow is present 
and so the pressure can not be determined within this 
concept. Hence, one may obtain the pressure course 
only for vibrations without impact or for short transient 
start-up regimes, which is not of much practical 
interest. 
The physical model shows qualitatively similar 
behaviour. When the flow rate is gradually increased, 
at certain flow velocity the model starts to vibrate. The 
acoustic pressure spectrogram is depicted on Fig. 6, 
where the fundamental frequency Hz1700 =F and its 
harmonics are clearly visible. 
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Figure 6:  spectrogram of the acoustic pressure 20cm 

downstream from the physical model. Flow continually 
increased from 1.1 to 1.6 l/s 

From the spectrogram one may notice that quite a 
strong noise was present. Moreover, the flow required 
to sustain vibration was too high compared to the 
mathematical model predictions and physiological 
limits. This was probably caused mainly by the leakage 
alongside the rubber element. 
However, if one compares the videostroboscopical 
record of the vibration with the animation of motion 
generated from the mathematical model, one may state 
that the oscillations show the same phase difference 
between the upstream and downstream parts, and that 
the two models generally exhibit identical type of 
vibration. 

5 Discussion and conclusions 

A mathematical lumped-parameter model of human 
vocal fold vibrations including impacts was presented 
here. Compared to the previous works of the authors, 
several substantial new features were included: smooth 
channel (vocal fold) geometry without steps or 
discontinuous gradients, variable flow separation point 
and a completely new numerical scheme for the 
solution of the coupled problem.  
Since the processes accompanying phonation are 
extremely complex, many simplifying assumptions still 
had to be imposed. One of the main drawbacks of our 
approach is a very rough approximation of the 
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aerodynamic effects during glottal closure, but as far as 
we know, this still remains rather a challenge in other 
studies concerning modelling of voice production, too. 
Nevertheless, we tried to model the most important 
features in a transparent, consistent way, and to retain 
reasonably time-efficient algorithms, which would 
allow to simulate numerically the vocal fold motion 
and to track the influence of various input parameters.  
Compared to other mathematical models known from 
literature, this one might be particularly useful to study 
the influence of geometry of the vocal folds and 
adjacent regions (such as the ventricular folds) on the 
stability boundaries and on vibratory patterns of the 
vocal folds. 
A physical model of the vocal folds was fabricated. 
Due to technical problems, it was not possible to 
exactly reflect the construction of the mathematical 
model in all aspects. Taking into account the fact, that 
the present mathematical model can not supply the 
pressure field during the vocal fold contact, it was not 
possible to perform direct quantitative comparison so 
far. The subjective confrontation of the 
videostroboscopical record vs. the computed animation 
of vocal fold oscillations, however, shows encouraging 
agreement. 
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